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Preface

The subject of this work is the study and the comprehension of the basic properties of a
Riemannian surface (" 23 py using almost elementary mathematical concepts. The goal of
the author is to offer to the reader a path to understanding the basic principles of the
Riemannian Geometry that reflects his own path to this objective. Hence, the whole work is
addressed mainly to physicists with a good background on Mathematical Analysis and Linear
Algebra, as well as to any student interested in Differential Geometry and its applications. Given
that the present work is not something like a “standard text” and above all is not a strictly
mathematical essay, the proofs of the emerging theorems are outlined in the form of “steps-to-
the-proof”. The goal is to focus on the main concepts and ideas leading to the final result; but
certainly they do not have the status of a strict mathematical proof.

The adopted route of inquiry presupposes a certain knowledge and adeptness on some
mathematical concepts and technics at a level determined by the relative references ¥°®, The
language and the mathematical context which is necessary for the description of the properties
of the Riemannian surfaces are gradually been building starting from the presupposed
knowledge. The geometric features of an abstract geometric surface are developed as a
generalization or prolongation of the corresponding features of a surface immersed in a three
dimensional Euclidean or pseudo-Euclidean space (1 (2 (3,

The whole work has been divided in 15 "paragraphs", each subdivided in a number of
"sections". A number of "examples" has been included in most of the paragraphs, aiming at the
application of the most important results to geometric structures familiar from the elementary
geometry. The set of the paragraphs has been separated in two "chapters".

In chapter 1 we concern with the fundamental concepts identifying a 3-dimensional Euclidean or
Minkowski space and we focus to the key-ideas that will help us to build the structure of an
abstract geometric surface. The “building blocks” we borrow from the structure of the Euclidean
space, to achieve our goal are the following: “the tangent spaces of a Euclidean space”, “the
metric tensor on the tangent spaces” “1, 2 and 3-forms”, “coordinate transformations”,
“invariant forms”.

We start with the study of the geometry of a 3-dimensional Euclidean space and incidentally of
the 3-dimensional Minkowski space. We introduce the concept of the tangent spaces and the
inner product in them, induced by the Euclidean inner product of the underlying space. Then we
define the concept of the “forms” on the tangent spaces and examine how they transform under
a coordinate-transformation of the underlying space. We focus on the properties and the
construction of the group of isometric coordinate-transformations on the three-dimensional
Euclidean or pseudo-Euclidean space. The concepts "“area” and "“volume” are defined as
invariant forms under the group of the isometric coordinate-transformations.

In chapter 2 we concern with the definition, the properties and the features of a surface. We
begin with the idea of a surface immersed in a 3-dimensional Euclidean or pseudo-Euclidean
space (paragraphs 7, 8, 9). We try to describe the geometry of these surfaces by applying all
the ideas, the reasoning paths and the geometric concepts we obtained in the previous chapter
studding the Euclidean spaces, having the ultimate goal to get the surface rid from its
underlying space. In the examples we manage in paragraph 9, we apply the induced relations
and propositions for the case of a surface of revolution. In paragraph 10 we make the crucial
abstraction to the idea of the Riemannian or geometric surface which is not necessarily
immersed in any underlying space. Then we gradually define the fundamental concepts and
relations which determine the structure of any geometric surface: “tangent planes”, “inner
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product”, “connection”, “covariant differentiation”, "“parallel displacement”, “curvature”,
“geodesic curves”, "frame fields", "connection forms", "geodesic curvature" and “geodesic
polygons”.

The examples aim at applying the general relations we have obtained, to the special cases of
geometric surfaces with structure similar to surfaces of revolution and especially to a sphere.

In the Appendices we develop a procedure aiming to construct the groups of the coordinate-
transformations which leave invariant a given real function defined on the tangent spaces of a
Euclidean or pseudo-Euclidean space.

Konstantinos G. Papamichalis



Symbolism

Everywhere in the mathematical expressions, we follow the Einstein convention for the
summation of quantities depended on indices .

R: The set of the real numbers

R’ : The 3-dimensional Euclidean space. It consists of the triples:
x=(x"x*x*), x eR, j=1,2,3

It has the structure of a linear space equipped with the inner product:
X-y = lel +x2y2 +x3y3

R} : The 3-dimensional pseudo-Euclidean space. It consists of the triples:

X = (xl,xz,x3), x’eR, j=1,2,3

It has the structure of a linear space equipped with the inner product:

Xy =x'y'+xy? - Xy’

In general, the symbol R (n, m integers:n > m) suggests an n-dimensional pseudo-Euclidean

space equipped with an inner product of the form:
X-y= lel +X2y2 +... +Xn—myn—m _Xn—m+1yn—m+1 - = Xnyn

L({f(l),f(z)}),f(l),f(z)eV: The subspace of the linear space V spanned by the linear

combinations:

E(l)a + 5(2)18 € L({é-(l)lé;:(z)}) o V, a,ﬁ eR

T.R}, T,R: : The tangent space of R; at its point P determined by the tuple x = (xl,xz,x3)

X(0) = (34(8), (0, 5(6)) = DO [dx () dx(t) dx (t))

dt a ' dt ' dt
Ax = x(t)At, At — 0: An infinitesimal vector of the tangent space T, R}, x = x(t)

x;,j=1,2,3: The “natural” basis vectors defining a Cartesian coordinate system of the

Euclidean space R} and its tangent spaces T,R. (x cR]). They are determined by the

relations:
X, = (1,0,0), X, = (0,1,0), X, = (0,0,1)

X X, = 5J.k

dx;, j=1,2,3: The basic 1-forms on the tangent spaces of R defined by the relationship:
dx; (Ax)djf X, - Ax

dx’, j=1,2,3: The basic 1-forms on the tangent spaces of Rg defined by the relationship:
dx’ (Ax) = Ax’



w", u=1,2: The basic 1-forms on the tangent spaces of a geometric surface S defined by the
relationship:

w* (e, (u)E") = &

w,, M =1,2: The basic 1-forms on the tangent spaces of a geometric surface S defined by the

relationship:

w, (e,(W)E") = (e,(u), €,(u))E" = g,, (W)

F

VKA 1

rv.,r., ", v,k A=1,2: The Christoffel symbols, determined by a connection defined on

a geometric surface S

Do (1) = P (8 (u+ Au)) = § (u) = &, (u) DLE (u), DLE (u) = [557(”) +FL ()" () [Aur: The

covariant differential of a vector field r?(u) with respect to the connection ¢ defined on a

geometric surface S

R, =-0,l, .+, —TAl,,+ AT, : The curvature matrix of a geometric surface S

K(P)= ﬁ(—&fm + 0,50 + Dol = Tol i) The (Gaussian) curvature, determined at any

point P of a geometric surface S

Au™v

@,,(AU) ;

fef

(8,/Ds8,), AU = é,(u)Au: The connection forms on a geometric surface S. The

basis-elements € (u), p =1,2 constitute a frame field on the tangent spaces of S
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Chapter 1

Key concepts
3-dimensional Euclidean space - Inner product - Tangent spaces - 1, 2 and 3-forms -
Integration of the 1 and 2-forms - Exterior derivatives of the 1 and 2-forms - Coordinate
transformations - Vector fields - Invariant functions and forms on the tangent spaces of a
Euclidean or pseudo-Euclidean space - The area-form - The volume-form

1. The 3-dimensional Euclidean and Minkowski space
In this, first paragraph the main features of a 3-dimensional Euclidean or pseudo-Euclidean
space are described: a) the determination of its points in Cartesian and non-Cartesian
coordinates, b) the operations of the addition and scalar multiplication with any real
number, c) the definition of the “natural” basis, d) the Euclidean inner product and the
corresponding metric tensor in the Euclidean and the Minkowski space e) the definition of
the norm and the distance in the Euclidean and the Minkowski space.

The 3-dimensional Euclidean space (symbolized: R}) is defined as the set of the triples

x=(x'x*,x*), x’ eR, j=1,2,3 equipped with a structure characterized by the following
features:

A) In R] the operations of addition and scalar multiplication by a real number have been
defined:

For any x = (Xl,xz,x3)e R ,y-= (yl,yz,y3)e R}, A € R we define:

x+y=(x'+y, X’ +y’, x> +y*) e R}

Ax = (Axl,sz,Ax3) cR:

We can easily verify that R equipped with the previous operations, has the structure of a

linear (vector) space ), The numbers x!, x?, x> determining each point x of the space are
called “Cartesian coordinates of x”. The point O determined by the triple (O, o, 0) is called

the origin of the Euclidean space.

Remark: The above definition of the addition and scalar multiplication for the triples
x=(x*,x?,x*) specify the coordinates x*, x?, x> as “Cartesian”. We could for example, imagine
another coordinate system (let us call it “polar coordinate system”) such that each point x of
Rg is determined by another triple, say (p,(p,() where the coordinates p,¢,{ are related
with the Cartesians x*, x?, x> by the transformation:

x' =pcosp, x* =psing, x> =C

In the polar coordinate system, let the points x and y be determined by the triples (p,qo,()
and (p',¢',{') respectively; their addition x+y is determined by the triple (p",¢",{") where:

p!r:\/p2+p72+2pp!cos((p_(pr)

@ = tan psing + p’sing’
pPCOSQ + p'cosQ’

=g+

B) The Euclidean space R; is equipped with the Euclidean inner product (or dot product),

defined by the bilinear form:
13



R;®R;>(x,y)>x-yeR

In Cartesian coordinates the analytic expression of the Euclidean inner product is given by
the relation:

Xy =x'y'+ Xy + Xy’

Remark: Notice that in the polar coordinate system, the Euclidean inner product is
expressed by the relation:

x-y=pp'cos(p-@ )+

In the Cartesian coordinate system we define the “natural basis” of the 3-dimensional
Euclidean space to be the basis-triples:
x, =(1,0,0), x, =(0,1,0), x; =(0,0,1)

Any element x = (xl,xz,x3)e R: is expressed as a linear combination of the basis-triples:
x=xx,7=123

We can easily verify that:

X X, =0,

The symbol &, is defined as the Kronecker’s delta”.

The linearity of the inner product implies that:
x-y =(X%,)- (V%) = X7y*R; - %, = 8, x7y*

In general the inner products of the basis-elements of an inner-product-space V, determine
a matrix with elements:

G = X; - X
The matrix [gjk] is called the “metric tensor” of V. Hence, the metric tensor of the

Euclidean space R; in Cartesian coordinates is the identity matrix I:

[9,]= [5jkl1§ff

What about the metric tensor of the 3-dimensional Minkowski space?

In the Minkowski space R] the matrix-elements of the metric tensor in Cartesian
coordinates, are determined by the relationships:

x;-x, =0ifj=k

x -x, =1,x,-x,=1, ;- x; =-1

Hence, the metric tensor of a Minkowski space in Cartesian coordinates is determined by the
matrix:

0
gdjf[gjk]: 0

o O
o = O

-1

In any case, the metric tensor is symmetric. By definition, in Riemann spaces the inner
product is positive defined ), but in Minkowski or Einstein spaces is not.

The inverse matrix of [gjk} is symbolized by [gjk}
It holds:
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[gjk} : I:gkn:l =1

gjkgkn = 5;

We define the norm of a point x in an inner-product-space, by the relationship:

_ v = ok
x| = Nx - x = «/gjkxfx
The distance d(x,y) between two points x, y of a space with norm, is defined as follows:
d(x,y) = |x—y|=Jx-y)-(x-y)

We notice that the measurement of distances in a space with norm, as well as the
calculation of distances between points on curves or surfaces immersed in this space, is
possible only if we know the metric tensor g(x) of the underlying space.

Remark: We could get an abstraction of the idea of the Euclidean space, as follows:
Consider a set V of points (whatever these points could be) such that there is a one-one

correspondence of V on the triples of the Euclidean space R; ®), Then the structure of R} is
projected on V and we could claim that V is a three-dimensional Euclidean space ®). Assume
that the points of R are determined in Cartesian coordinates. Name O the point of V
corresponding to the triple (0,0,0); we call O “the origin” of V. Then, name Py, P,, P; the
points of V corresponding to the triples:

x, =(1,0,0), x, =(0,1,0), x, =(0,0,1) e R}

The origin O and the points P;, P,, P; of V determine a “Cartesian coordinate system” on
V.

Tangent spaces

In the second paragraph, we introduce the idea of the tangent spaces of a Euclidean or
pseudo-Euclidean space. This concept, because of the “flat” structure of a Euclidean space,
at first glance seems to be unnecessary, trivial or superfluous. Nevertheless, its
generalization to the non-Euclidean cases and to surfaces proves to be of crucial importance
for the development of a mathematical arsenal suitable to describe the features of these
structures.

The idea of the tangent spaces of R} comes from the notion of the tangent vectors of a

curve. A curve c of the space R; is a subset of R} whose points are determined by a
differentiable function of the form:

. _ _ 1 2 3 3
ciIs>t - x = x(t) = ('), x*(), X°(1)) € Ry

The domain of the parameter t is an interval I of the real numbers R

The curve c is well-defined under two assumptions (1) (2 (3);

(a) We accept that the constant function, which maps the whole I at one fixed point of R; is
a -degenerate- curve; we call it “the constant curve”.

(b) For any curve different of the constant curve, we assume that for any t € I there is an
index j e {1,2,3} for which it holds:

xf(t):%pio

I.e. the tangent vector of a curve is nowhere identically zero.

15



The tangent vector of the curve c at its point P =P ,, determined by the triple x=x(t) is

(t)
defined by the derivative:

. . d . . .

X = X(0) 2 (X0, (0, (1) = (X0, X*(0), X (D)

We make the parameter transformation: t = AT, A = constant e R

The new parameter 7 runs the interval: I c R

The abstract point P of the curve c is represented by the identical triples X(7) and x(t):

X(T) = x(t) = x(AT)

The tangent vector of the curve c at P, as a function of the parameter T is calculated by the

derivative:

dx(r) dx(t) dx(t)dt
dr  dr  dt dr

We imply that every vector & = x(t)A, A € R is tangent of the curve c at its point Pyy. Or

X(E)A

else: every element of the one-dimensional vector space L({)’((t)}) generated by the vector

x(t) (see: "Symbolism") is a tangent vector of the curve c.

Let us now consider a point P =P, e R} determined by the triple x and assume all the
curves of R; that pass by P. We define the set T R of all the vectors &(x) which are
tangent to some curve of R; passing by P:

&(x) e TR g"there is some curve c, : x, = x(t)inR; with : x(0) = x, &(x) = x(0)"

Or:

T.R: = {E(x) = (fl(x),fz(x),§3(x)) : &(x)isthetangent vector at x, of acurvein R} passing byx}
We symbolize &/(x) j =1,2,3 the Cartesian coordinates of the vector &(x) that is tangent at

the point x, to a curve of R; passing by x.

Proposition 2.1

The set T R} is a vector space isomorphic to the 3-dimensional Euclidean space.
It is called “the tangent space of R at the point x of the space”.

Steps to the proof

a) Any tangent space T, R. contains the zero-vector:

The tangent vector of the -degenerate- constant curve ¢’ (t) = x’ is the zero triple (0,0,0).
b) Let: &(x) = x;-&’(x) e T,R;

Then, according to the definition of the tangent spaces, there is a curve x/ = x’(t) such
that: x/(0) = x’, x’(0) = &/(x)

We shall show that for any A e R it holds: &(x)Ae T R}

We have:
For A=0 it holds: §&(x)A=0

Then, according to (a): &(x)A e T,R:
For A =0 define the curve: X/ = X/(t) = x’(At)
This curve passes from x:
%7(0) = x’(0) = x’
16



Hence, by definition, its tangent vectors at t = 0 belongs to the tangent space.
We conclude that:
d)?(t)| _ dx()\t)| B dx(T)|

_ A= EGOA
dt dt dar ()

TXRg E)

e-o o o

c) Let:
6(1)()() =X;- é-(jl)(x)l f(z)(x) =X; ‘4;:(]2)()() € TXR03
Then, there are curves x}, = x}(t), X}, = X}, (t) passing from x (for t=0) with tangent

vectors at x the vectors &,,(x), &,,(x) respectively.

The curve X/, (t) = %(x{l) (2t) + X7, (Zt)) passes from x (for t=0) and its tangent vector at x

is:

d t

X“d;?() =600+ 600
Hence:

£y (X) + £ (X) € TR

In the tangent space T,R; we define an inner product induced by the Euclidean inner
product of the underlying 3-dimensional Euclidean space:

6(1)()() : E(z)(x) = (XJE(JH(X)) : (ng(kz)(x)) = Xj - X E(J1)(X) : £(I<2)(X) = gjk (X)f(Jl)(X) : E(kz)(x)
In Cartesian coordinates the matrix g(x) =[g,(x)] of the metric tensor, for any tangent

space, equals the identity matrix I =[0, | (see paragraph 1).

The “length” (or norm) of a vector &(x) e T R’ is defined by the relationship:
E0] = JEC)-E0X) = g, () E7 ()& (x)

For any x € R} the tangent space T,R} equipped with the above metric, is a metric space.

By the same way we are able to define the tangent spaces of a 3-dimensional Minkowski
space.

Vector fields on the Euclidean or pseudo-Euclidean spaces
We define as vector field on a subset C of a 3-dimensional Euclidean space any vector

function determined on C which for every x e C c R} returns a vector &(x) of the tangent
space at x:

R oC>x —>&(x)eT,R;

For example, the tangent vectors of a curve c: x/ =c’(t), t e I c R define a vector field on
the subset c(I) of the Euclidean space. The analytic expression of this vector field in
Cartesian coordinates is determined by the relationship:

dc’(t)
&(x,) = x, gt © T.oRs

Remark: From the point of view of the Euclidean spaces the concept of the vector field
seems identical to the concept of a vector function defined at the points of the space and
with values in its tangent spaces. Given that the “natural” basis of the space is the same for
all the tangent spaces of a Euclidean space, the variation of a vector function is determined
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completely by the analytic expressions of its Cartesian coordinates. But in the case of non-
Euclidean spaces the game is more complicated: the variation of the vector function
depends both on the analytic expression of its coordinates and of the variation of basis-
elements of the corresponding tangent space; we need to know how this basis changes
when we move from one tangent space to another.

The concept of the vector field could be considered as a generalization of the vector
function; it is endowed with the necessary characteristics that involve information about the
structure of the underlying space and permit us to investigate its geometric features.

1-forms

The forms are linear functions defined on the tangent spaces of a Euclidean or non-Euclidean
space or even a surface. The analytic expression of a form depends on the position of the
tangent space of the underlying geometric structure. To investigate the way one form varies
when we are moving from one tangent space to a neighboring one, we study the action of
the form on vector fields defined on curves of the underlying geometric structure; from the
processing of the results, significant geometric properties of the studied space or the surface
emerge.

By scrutinizing on the behavior of the forms under coordinate-transformations, we find out
the analytic expressions of those forms which are invariant under the group of the isometric
transformations; these forms lead us to define important geometric quantities of the
underlying structure like the area-element and the volume-element.

We call 1-form on R} any linear function with domain the tangent spaces TR}, x € R of R}
and range in R.
Let w, be a 1-form and &(x) = x; -&/(x) e T_R? a vector field defined on R} (see paragraph

2).
We can always write:
w, (§(x)) = p;(x)&7(x) (3.1a)
The real functions p;(x), j=1, 2, 3 determine the analytic expression of the form.
For each form w, we can always define the vector field:

E(p)(x) =X; fé;)(x)l E(Jp) dzfgjk(X)pk(X) (3.1b)
The matrix [gjk(x)] is the inverse of the metric tensor:

gij(x)gjk(x) = 5/2

According to 3.1b, the right hand side of 3.1a is possible to be written in the form of an
inner product:

@, (E()) = & (%) - E(X) = (X, - E(x)) &L (%) (3.2)
Consequently, the value of any 1-form at any vector &(x) e T, R; is calculated by the inner
product of §(x) with the vector field & ,(x) specified by the particular 1-form.

We can easily verify that the set of the 1-forms defined on certain T, R} has the structure of

a vector space (the addition-operation is the usual addition of two real functions and scalar
multiplication, the multiplication of a real number with a real function); this space is called

“the dual space” of TR} .
Given that any 1-form is completely determined by a certain vector field, we infer that the
1-forms of R; are dual to the vector fields of the same space.

18



Some special 1-forms
a) The 1-forms dx; are defined by the relationships:

dx; (E(x)) = X; - E(X) = X; - X, E(X) = G, £(x) = £,(x) (3.3)
Every 1-form is possible to be written as a linear combination of the forms dxj as follows:
From 3.2 and 3.3 we result that:
@, (§(x)) = &, (x)dx; (§(x))
Hence:
w, = &L, (x)dx; (3.4)

b) The 1-forms dx’ are defined according to the relation:
dx’ = g’dx, (3.5a)

dx’ (§(x)) = g™dx, (§(x)) = %g,,&"(x) = &' (x) (3.5b)
We result that the 1-forms dx’ return to the vector &(x) its j-Cartesian coordinate.
Any 1-form can be expanded in a linear combination of the forms dx’ according to the
expression:

w, = g, &7 (x)dx* (3.6a)

From 3.6a we conclude that:

w, (§(x)) = 9;.&,()dx* (&(x)) = g,E8,(X)E (x) (3.6b)
Due to this property, the forms dx’ are called "basic forms" with respect to the Cartesian
coordinates of the 3-dimensional Euclidean space.

c) The differential (or exterior derivative) of a real-valued differentiable function
f: R, — R is defined as the 1-form:

df (x) = o,f (x)dx’ (3.7a)

def 7

def  px’

The differential of a function f can have as domain any vector field defined on the Euclidean
space. Let us assume the vector field defined by the tangent vectors of the curve:

c:x, =x(t)

We express the tangent vectors of ¢ in the form:

Ax(t) = X(t)At € Tx(t)Ro3 ,AteR !

The previous relation defines the vector field Ax(t) along the curve c: for each t the
corresponding vector of the field is tangent to the curve c at its points x(t).

The action of the 1-form df(x)| on the vectors Ax = Ax(t) of the field returns the real
values:

df(x)|,, = o,f(x)dx’(Ax) = o,f (x) Ax’ (3.7b)
The quantities Ax’ = x/(t)At are the Cartesian coordinates of the vector field:
Ax(t) = x; AX(t) = x; X’ (t)At

! We often use the symbol Ax = x(t)At for a tangent vector. This symbolism is fruitful when we consider

infinitesimal tangent vectors, i.e. when we let: At -0
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Consider the 1-form: w, = p, (x)dx’
If we can find a function f(x) such that:
w, = df(x) = 6,f(x)dx’, w,(Ax) = df(x)|, =o,f(x)Ax’, Ax e TR}

Then, we say that w, is an exact 1-form.

d) The directional derivative of the previous function f at x, along the vector Ax e T R; is

defined by the relationship:
f(x +€&Ax) - f(x)

df(x)= IE'DQ - (3.8a)
An immediate consequence of this definition is the identity:
d,.f(x)=0,f (x) Ax) = df (x)| (3.8b)

We imply that the directional derivative of f(x) is identical with the differential of f(x).

Remark: The definition 3.8a of the directional derivative is valid for the case of the 3-
dimensional Euclidean space as long as both the points x of the space and the vectors Ax of
the tangent spaces are determined by Cartesian triples. This is not generalized per se, in the
case of more complicated structures, like the geometric surfaces that are to be studied in
the forthcoming paragraphs, where the points and the tangent vectors are determined in
completely different procedures.

Integration of a 1-form along a curve c of the Euclidean space
On a 3-dimensional Euclidean space, consider the curve c:x, =c(t),t eI c R and the 1-

form w, = p].(x)dxf expressed in Cartesian coordinates.

Let Ax, = ¢(t)At TC(”RS , At — 0 be an infinitesimal tangent vector of c at its point c(t).
The action of w, at the tangent vectors Ax, of the curve c returns the infinitesimal real
values:

w,(Ax,) = p, (c(t))c’ (t)At

We define the integral of w, along the curve ¢, among two points P;, P, of the curve

according to the relationship:
P, P, . t, o t, B
j w, = j p,(x)dx’ = j p; (c(®))ax’ (¢’ (t)At) = j p; (c(®)) e/ (t)dt (3.9)
A ) 4 4

The points Py, P, are lying on the curve c; they are determined by the triples c(t;), c(t,).

2-forms

In this paragraph we are going to introduce the 2-forms of a 3-dimensional Euclidean space.
The concept of the 2-forms is intimately related with the 1-forms. This relation will become
clear by pondering on the result of the integration of a 1-form along the boundary of an
elementary parallelogram of the Euclidean space. Eventually, we come to the idea of the
wedge product of two 1-forms and then the definition of the 2-forms; our results will lead us
to a formulation of the Stokes' theorem for the case of 1 and 2-forms determined on a 3-
dimensional Euclidean space.

Consider the 1-form w, = p].(x)dxf and an elementary parallelogram, symbolized by
n [Ax,Ax] of the 3-dimensional Euclidean space. In Cartesian coordinates, the vertex x of
the parallelogram is determined by the triple x=(x1,x,,x3); its sides are determined by the
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vectors Ax, Ax eTR. (figure 4.1). Our aim is to integrate w, along the boundary
on [Ax, A x] of the elementary parallelogram and evaluate the result when both sides tend
to zero: A x, Ax >0

The result of the integration is achieved by applying 3.9 and the mean value theorem 9 (®),

Remark: In the Euclidean or pseudo-Euclidean spaces the result of the parallel
displacement of a vector Ax e T R} from the point x to another y, is by definition a vector

Ay €T R; having identical Cartesian coordinates with the initial vector:

Ay’ =Ax

This condition is not general: we shall see that the parallel displacement is determined by a
more complicated procedure in geometric surfaces or non-Euclidean spaces.

X+4x -Ax x+40 x+4.x
g R
-A.%
Ax
X X+A x
P A.x Q

Figure 4.1: An elementary parallelogram of the Euclidean space. When both
sides Ax, Ax tend to zero, the parallelogram is shrinking to the point P

determined by the triple x=(x1, x5, x3).

Let us now proceed to the integration of the 1-form @), along the boundary on,[A x, A,x] of

the infinitesimal parallelogram:

w, = Cﬁ p; (x)dx’
o [Ax,4,x] o [Ax,4,x]
X+, x X+ X+ 0% X+ 0% X+ X+ 0,
w, = j p,(x)dx’ + j p,(x)dx’ — j p,(x)dx’ - j p,(x)dx’ ~
on, [Ax,Ax] X X+A4x X X+2M,x

~ pj(X)A1Xj +pj(X+A1X)A2Xj —p].(X)AZXj _pj(X+A2X)A1Xj ~
~ 0P, (X)AX DX —0,p;(X)AX A X

By taking into account that A x, A, x — 0 we have applied the mean value theorem; we have

expanded the functions p,(x +A4,x), p;,(x + 4,x) in Taylor series and have kept terms up to

the second order with respect to A x’, A,x* ) ) ©),
The final result is expressed by the relationship:
lim gS w, = lim gS p,(x)dx? = 0,p,(x)(Ax*Ax’ - AxIAX ) (4.1)

X, 0,x—0 A x,0,x—>0
AXr on, [Ayx, Ayx] 2 o, [Ax,4,x]

We define the wedge product dx’ » dx* of the basic 1-forms dx/, dx* (see paragraph 3) to
be the bilinear antisymmetric form:
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dx? A dx* (4x, 4)X) = A XA X — A XA, X (4.2a)
dx’? ndx* (A, 8,x) = €15 A x4, x" (4.2b)
The antisymmetric symbol €/} is defined as follows ©):
a) The values of j, k are in the set {1,2,3}. If j=k, then: sjfl‘,jl =0
b) The symbols j;, k; take values in the set {j, k}. For j#k, he value of sjfl’;l equals to the

parity of the permutation: (J’ ll:j
1

Jir

We define a 2-form ¢ as any linear combination of the wedge products of the basic 1-
forms dx/, i=1,2,3:
o= hy (x)dx’ A dx* (4.3)

The symbols hj(x) stand for real functions defined on the Euclidean space.

The exterior derivative of a 1-form
The exterior derivative of a 1-form w, = p,(x)dx’ is defined to be the 2-form:

dw, = dp,(x) A dx’ = 8,p,(x)dx* A dx’ (4.4)

From 4.1-5 and for Ax,A,x - 0 we imply that:
dw, (Ax,A,x) = Sf) w (4.5)

P
on, [Ax, Ayx]

Let us try to apply relation 4.5 to calculate the integral of the 1-form w, along a plane,

closed curve C, which is the boundary of a compact and simply connected set ® R.:
C = oR,

def
The set Rc is possible to be approximated by the union of a collection of infinitesimal
parallelograms 1, [AXx,Ax], x € R. (figure 4.2). The integration of the 1-form w, is

accomplished as follows:

¢ w,= lim > [ =
P P
C=0R. mla, 2x1-0 {nx[AlxlAZX] (H[AIX,AZX]

- n[All!Anz’](]eo {HX[A;A%] da)p (Alx’ AZX)} dijj;da)p

<f> w, = _[da)p
C=Rc Re

Relation 4.6 is a special case of the famous Stokes’ theorem.

(4.6)

Proposition 4.1
The integral of an exact 1-form w, along any closed curve c equals to zero. Inversely: if the

integral of a 1-form w, along any closed curve c equals to zero, then w, is an exact form.

Steps to the proof
If w, is exact, then there is a function f(x) such that: w, = df (x) = o,f (x)dx’

We are going to verify that the exterior derivative of w, = df (x) is identically zero.
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It holds:

0,0,f (x) = 0,0, f (x)

dx* Adx? = —dx’ A dx*

Hence:

0,0,f (x)dx* ndx? = -0,0,f (x)dx? ndx* =-6,0,f (x)dx* A dx’
From which, we imply that:

0,0,f (x)dx* ndx? =0

Figure 4.2: the simply connected, compact set Rc lying on a plane is
approximated by the union of a collection of infinitesimal parallelograms.

The exterior derivative of w, = df (x) is:
dw, = ddf (x) =d(0,f (x)dx’) = 8,0,f (x)dx* ndx’ =0 (4.7)
The proof of the direct proposition follows by applying the Stokes theorem (4.6), under the

condition 4.7.

The truth of the inverse proposition is obtained by following the steps:
a) Given that the integral of a 1-form w, along any closed curve equals to zero, we infer

that the integral jwp does not depend on the curve joining the points @ and x:

[

w, is well-defined.

[o}

b) Because of (a), the function f(x) =

Q C— X

c) By setting:

x =c(t), Ax = c(t)At, At >0

c(t + At) = c(t) + c(t)At

We apply 3.9 and with the help of the mean value theorem, we show that:

c(t+At)=x+Ax t+At
d,f(x)= ( j) w, = j p, (c(M) & (T)dr ~ p, (c(t)) &/ ()AL = p,(x)Ax = w,(AxX)

We conclude that w, is an exact form.
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5. Coordinate-transformations

In Cartesian coordinates, any point P of an abstract Euclidean space is determined by a
unique triple (x!,x%,x%) of real numbers. If we change the coordinate system to the polar or
spherical one, the point P does not change but the values of its coordinates do. The same is
true for any vector belonging to any tangent space of the Euclidean space. We say that the
points of the space and the vectors of its tangent spaces are invariant under a coordinate-
transformation; but their coordinates are not: their values depend on the choice of the
coordinate system. In general, there are quantities defined on a geometric entity (like a
Euclidean or non-Euclidean space or a surface), whose explicit form or their values are left
invariant under any coordinate transformation. These properties that are independent of the
used coordinate system reflect the intrinsic structure of the studied geometric entity. Our
goal is to find out these invariant properties. Some of them are: the elementary length of a
curve, the area and the volume forms, the Gaussian curvature.

First of all we define the group of the diffeomorphic transformations in a Euclidean space.
Then we study the variations induced by any coordinate-transformation to the coordinates of
the tangent vectors, the basis-vectors, the 1 and 2-forms. We continue by trying to find out
some first invariant quantities and forms.

Let P be a point of the 3-dimensional Euclidean space and x =(x',x? x*)=x,x’ the
representation of P in Cartesian coordinates (paragraph 1). Consider a coordinate-
transformation x’ = x/ (X) where the triple X = (X*,X*,X’) represents the same point P in
the new coordinate system. We assume that the transformation x’=x’(X) has the

following properties:
a) It is one-to-one and onto
b) It is differentiable at least up to the second order, with respect to every argument

X, j=1,2,3

c) The inverse transformation X’ = X’(x) is differentiable at least up to the second order
too

We call these transformations “diffeomorphisms”. The set Diff(R}) of the diffeomorphisms

of R equipped with the operation of the composition of transformations, forms a group.

From now on, when we use the term “coordinate-transformation”, we mean that this
transformation is a diffeomorphism.

Assume that the points P € R are determined by the Cartesian triples x=(x',x%,x%) and let
x! =x’ ()_() be any coordinate-transformation. We are going to examine the implications of
this transformation to the tangent spaces T,R; of the Euclidean space.

We know that the elements of T,R; are the tangent vectors at P of every curve passing from
P; let us consider a specific tangent vector: & e T,R;

How do the coordinates of & change, under the coordinate-transformation x’ = x’ (X) of the
underlying space?

Given that & e T,R} there is a curve c of R; passing by the point P such that & is a tangent

vector of c:
c:x) =x'(t), x(0)=x=P
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The Cartesian coordinates of & are given by the relationships:
& =x7(0), j=1,2,3
The analytic expression of the same curve c in the new coordinate system x is determined
by the set of the functions:
x) =X (x(t)), j=123
Hence, the coordinates of the vector & in the new coordinate system are calculated by the
equations:
ox’

-

. ox?
= x¥(0) = —
&0 ax | © ox*

Ek =ak)—(j Ek
X

Or, in matrix form:

' (ax a,x" o,x )&

& =0 x> 0,x* 0,x* || &

&3 0,X> 9,x° 9,x° || &

We define the Jacobian matrices of the transformations X’ =X’(x), x’ =x’(X) by the

relations:
) ox’ .
J - 7 — J
Ri(x) def oxk ; = 0X |x
RI(X) = o’ =0 xf|
KA der gxck . K2k
Ri R R
[Rlz|R R R
R R R

B B . | PR) DR DR
[RI]=[R!] = det[RI] -D(R;) D(R}) -D(R})
“1| D(R}) -D(R}) D(R3)

R R

D(Rf);fdet{Ré Rg},...
2 3

It holds:

=, ox*“ox"  oxk

RKR" = AN

T ax" ox? ox? J

Hence, under the coordinate-transformation x’ = x’ ()_() of the underlying space R; the

coordinates of any vector & € T,R; change according to the linear transformations:

&k = EJ’,‘ &l (5.1a)
g =R & (5.1b)
The coordinates of the vector £ have been changed, but the vector & has not. On the other

hand, the linearity of the equations 5.1a and b implies that the basis of every tangent space,
in the new coordinate system has also been transformed.

How do the basis-elements of the tangent spaces transform, under the previous coordinate-

transformation?
Let X, j=1,2,3 be the basis-elements of T,R: in the X -coordinate system.
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Each vector & e T,R; is invariant under any change of the coordinates we are using to
represent it. Hence, we have:

E=x8& =xZ&" (5.2a)
X, RI & = x &

(%Rl -x,)& =0

x, = X,Rl, X, = xR} (5.2b)

Example 5A
The polar coordinate system in the Euclidean plane

In this example, we apply the concepts and the geometric relations we have dealt up to
now, for the case of the Euclidean plane: a) define the transformation from Cartesian to
polar coordinates and its inverse, b) derive the Jacobian of these transformations, c) derive
the corresponding coordinate-transformation on the tangent spaces of the Euclidean plane,
d) find the explicit form of the polar basis-elements on the tangent spaces, e) calculate the
matrix-elements of the metric tensor in polar coordinates.

2 TPRZO
Ax

X,

X,

Xo \ X,

(010) X, 1

Figure 5.1: Polar coordinates in the Euclidean plane.

Let us consider the Euclidean plane R and a system of Cartesian coordinates X, j=1,2 init.
Any point P € R? is determined by its Cartesian coordinates x’, x* (figure 5.1). We write:
P2 x =(x', x*) = x,x" + X,x°

x, =(1,0), x, =(0,1)

The polar coordinates (x’, j=1,2) in R; are determined by the transformation:

1_ ot o2
X =X cosx (E5A.1a)
x? = X' sinx?

X' €(0,+ ), x* €[0,2m)

The inverse transformation is defined everywhere in the plane, except the point (0,0); it is

given by the equations:
)—(1 _ ((X1)2 + (XZ)Z)]'/Z
2] (E5A.1b)

_ %
Xx? =tan™| =
%
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Let Ax e T,R; and Ax', Ax? its Cartesian coordinates:

Ax = X, Ax" + x,Ax?

The polar coordinates of Ax are calculated by applying relations 5.1a:
Ax' = cos x* Ax' — X' sin x* Ax?

s ST (E5A.2)
Ax? = sin X% Ax* + Xx* cos X* Ax?
By solving the system of equations E5A.2 for Ax", Ax* we find:
AXt = cos X2 Ax* + sin X% Ax?
(E5A.3)

AX? = _ll(—sin X* Ax* + cos X* Ax?)
X
Notice that the explicit forms of the matrices [ﬁ,{], [R,{J in the case of our example are:

72 _vlain g2
|:Rf:|= COos X —X SINX
sinx? X'cosXx?

cos X sin X2

[R]=

It is well-known that the transformation x’ = x’ ()_() is invertible in some neighborhood of

1 - —2 1 —2
—_—15|nX _—ICOSX
X X

any point x of its domain, if only the determinant of its Jacobian matrix [R{] at x is non-
zero ¥ (®, The determinant of [R | is:

det| R} | = x*

We result that x’ = x? (X) is invertible everywhere except the points (x',x*) which satisfy
the condition:

2= (2 + (2R) 7 =0

We conclude that x’ = x’ (X) is invertible everywhere except the origin (0,0).

We are now ready to calculate the basis-elements X,, X, of T,R? corresponding to the polar
coordinate system:

Let Ax', AX* the coordinates of the vector Ax e T,R? with respect to the new basis.

We apply relations 5.2b and we find:

X, = X, COS X* + X, SinX* = (cos X*,sin X* )

X, = -X, X' sinX* + X, X' cos x* = X" (-sinx*,cos X°)

_ 1 o
%= Ter oy )

X, = (—xz,xl)
Verify that the vector Ax e TPRS’ in polar coordinates is written:
Ax = X, AX" + X,AX* (E5A.4)

How shall we calculate the norm |Ax| of Ax in polar coordinates?
From E5A.4 and the properties of the inner product, we have:
|Ax|2 = <Ax, Ax) = <)_(1,)_(1>(A>_(1)2 + <)_(2,)_(2>(A>_<2)2 + 2<)_(1,)_(2>A)_<1A>_<2
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We need the analytic expression of the metric tensor in polar coordinates; from the previous
equations relating the polar with the “natural” (Cartesian) basis, we find:

Gy = (X, %,)=1,3, =Gy = (X, X,) =(X,,%X,) =0, g,, = (X,, X,) = (x')? (E5A.5)
Hence:
|Ax] = (A% + (X1 (A%2)

Remarks:
a) The basis-elements x,, X, change when we move from any point P to another point Q of

the plane; i.e. when we move from the tangent space T,R. to another TQRS of the Euclidean

plane.
b) The basis {)_(1,)_(2} is orthogonal but not unitary as long as the length of X, is not in

general, equal to 1.
c) The analytic expression of the metric tensor has been changed in the new coordinates.

Invariant scalar fields defined on a 3-dimensional Euclidean space
We remind some points about the symbolism we have been using: x symbolizes a Cartesian

triple determining the position of some point P e R and Ax = x(0)At is the tangent vector
of some curve x, = x(t) passing by x: x(0) = x

The same point P in another coordinate system is determined by another triple x which is
related with x by a coordinate-transformation.

We are using the symbols Ax and Ax to symbolize the same tangent vector in the two
coordinate systems, respectively. We have already emphasized that Ax and Ax are
identical; they suggest that the same vector is expressed in two different basis elements
and its coordinates are different in each system:

AX = Ax = X, AX" + X,A%% = X, Ax" + X,AX° (5.3)

Scalar fields on R;
Let us now consider a real function:
F(x;Ax), Ax € TR
We assume that F(x;Ax) is defined on every tangent space T,R; of R but its form is
possible to depend on the position x of the tangent space. We say that F defines a scalar
field on the 3-dimensional Euclidean space.
For example, the cosine of the angle u of AX e T,R? relative to the basis vector X, in polar
coordinates is calculated by the expression:
X, -AX X, - (X%, AX" + X,AX7)
X[[8X  (g,,a,,(a%' ) + §,,(a%*)?
According to relation E5A.5 of the Example 5A, we result that:
AX!
JAXY + (X (4x7)?

COosUu =

Cosu =

We see that cosu is a function of AX = x,Ax" + X,AX” but its value depends on X' too; i.e. it

depends on the position of the tangent space T_R; in the Euclidean space.
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We say that F(x;Ax) is invariant under the coordinate-transformation x’ = x’(x) if only
the following condition is satisfied:

F (x; Ax) = F (X; AX)

For example, the function F(Ax) = (Ax')* + (Ax*)* + (Ax?)* defined on the tangent spaces of
R; is invariant under the linear coordinate-transformation:

x' = X' cosu - X* sinu

x* = X' sinu + X* cosu

X =Xx?

The coordinates of the tangent vectors are transformed according to the relations:

Ax' = AX' cosu — AX? sinu

Ax* = AX* sinu + Ax? cosu

Ax? = AXP

Hence:

F(AX) = (Ax')? + (Ax*)* + (Ax?)* =

= (4x" cosu - AX? sinu)2 +(AX* sinu + AX’ cos u)2 +(ax )2 =

= (AX') + (AXP) + (AXP)? = F(AX)

Vectors
We have seen that any vector Ax =x,Ax’ eT,R] is invariant under any coordinate-

transformation of the underlying space. According to the transformation rules 5.1 and 5.2,
although both the basis-elements x; and the coordinates Ax’ change, the sum xijj

remains unaltered:
Ax = X, Ax7 = X, R\RIAX" = X, 55 AX" = X, AX* = AX

The elementary length on a curve
The length As of Ax is also an invariant quantity; it has the same value regardless of the
coordinate system in which the measurement is being accomplished:

As = JAx - Ax = [x; - x, AT Ax* =
= JX, X, R" R} R) R AX"Ax? =

= X, - X, Ax"AX" = JAX - AX = A5

The inner product
The same is true for the inner product of any two vectors A,x,4,x € T,R}
We can easily verify that:
AXx-AXx=AX-AX
The invariance of the length and of the inner product under any coordinate-transformation
results from the specific transformation rule of the metric tensor [ g, ]:
9y =X, X, =X, XR'R] = gmnRJ’.”R,'(7 = ij.”gmnRZ (5.4a)
Or, in matrix-form:

[9,] = [R:] [Gmn )[RE] (5.4b)
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Example 5B
The metric tensor in polar coordinates

In the present example, we derive the analytic expression of the metric tensor on the
tangent spaces of the Euclidean plane, in polar coordinates. Then we verify that the norm of
any tangent vector is invariant under the transformation from the Cartesian to polar
coordinates.

In Example 5A, we found how the basis-elements x,, x, and the coordinates Ax*, Ax* of a
vector Ax = x;Ax’ e T,R; transform in polar coordinates; we also derived the analytic form

of the Jacobian matrix of the corresponding coordinate-transformation.
In Cartesian coordinates the metric tensor [gjd in every tangent space T,R? has the form:

(9, ]= [(1) (I)J (E5B.1)

By applying 5.4a and b we obtain the analytic expression of the metric tensor in polar
coordinates:

_ 1 0
(G ] = (O (WJ (ESB.2)

We confirm the invariance of the length of any vector Ax = x,Ax’ = X,Ax’ e TR} for this
special case:

(L\s)2 = g,AX'Ax7 = (AX')? +(Ax*)* =

= (cos x* Ax' — X' sinx? Ax*)* + (sinx? Ax"* + X' cos x* Ax*)* =

= (AX')? + (X' (AX?)? = G, AX"AX" = (45)

With the help of the following proposition we are able to build a special type of scalar fields
F(X;Ax) which are invariant under any coordinate-transformation of the underlying

Euclidean space.

Proposition 5.1
Consider the scalar field F, defined by the analytic expression

F,(x;Ax) = Ax - (A.(Ax)) (5.5)
Ap is a linear map, with domain the tangent space T,R. and range into its-self. In the x-
coordinate system the point P is determined by the triple x; in the coordinate system
defined by the transformation x’/ = x’ (x) the same point P is determined by the triple X
(see the previous section of the present paragraph).
The scalar field F, defined by 5.5 is invariant under any coordinate-transformation
x? = x?(X) of the underlying space; i.e.: F,(x;Ax) = F,(X; AX)

Steps to the proof
a) How do the matrix of the linear map A, :T,R} — T,R} transform under the coordinate-

transformation x’ = x’ (X) of the underlying Euclidean space?
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With respect to the x-coordinate system, the matrix [ajk.(x)] of Ap is defined by the action of
Ap on the basis elements of the tangent space T,R’
A(x;) = x,a;(x) (5.6a)
On the other hand the matrix [a,,(x)] is determined by the relation
a;(x) =X A (X;) (5.6b)
How are the matrices [a ], [a,; | related with each other?
3y = X, - A(X;) = X, - X,a] = g,,a] (5.6¢)

b) How do the matrices [aj.‘], [a,q] transform under the coordinate-transformation
x? = x?(X) of the underlying space?

The coordinates of the vectors Ax, Ax' = A,(Ax) transform according to 5.1. Hence, by 5.6a
we imply that:

Ax™ = aiAx?

RiAX" = afRIAX"

AX"” = RIarR! Ax*

From the last equation we conclude that the matrix of the linear map A, has been
transformed according to the relationship:

al(x) = R, a7 )R; (5.7a)

The matrix [5{()‘()] is the matrix of Ap in the X -coordinate system:
The matrix [a,; | has been also transformed. We symbolize [, | the corresponding matrix in
the X -coordinate system. We calculate the matrix-elements of [, | by using 5.3 and 5.6:

8,(X) =X, - A (X,) = X, - A, (X, )RIR] = &, (X)RIRT (5.7b)
¢) In the x-coordinate system, the action of F4, at Ax returns:
F,(X; Ax) = Ax - (A(AX)) = a,;(x)Ax*Ax’
Under the coordinate-transformation x’ = x’ (X) the vectors Ax and A,(Ax) are invariant:
Ax = AX
A, (Ax) = A, (x;)Ax7 = A, (X, )RS RI AX" = A, (X,) AX* = A,(4X)
Hence:
F,(x; Ax) = Ax - (A.(AX)) = AX - (A,(4X)) = F,(X; AX)

We now derive the last relation by following a straightforward path:

FA(X; AX) = Ax - (A,(AX)) = a,,(x)Ax* Ax’ = &, (X)RTRIRXRI AXP AX =

=a,,(X)AX"AX" = F,(X; AX)

We conclude that any scalar field F, of the form 5.5 is invariant under any coordinate-

transformation x’ = x’ (X) of the underlying space.
Scalar fields of the form: F(x;Ax) = f,(x)Ax'Ax’
A) Consider a scalar field defined by the expression:

F(x; Ax) = f,(x)Ax' Ax’
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F is a scalar field defined on the tangent spaces T,R; of a 3-dimensional Euclidean space.

In the x-coordinate system the point P, is determined by the triple x = (x*,x*, x*)
By applying a coordinate-transformation x’ = x’ (X) we define the X -coordinate system and

the same point P is determined by the triple: X = (X, x*,X°)

The value of F for some Ax e T,R? is not dependent on the choice of the coordinate system.
In the X -coordinate system let us symbolize F by the analytic expression:
F(X; AX) = f,(X)AX A%
It is always true that:
F(x; Ax) = F(X; AX)
fon(AXTAX" = F(X)AX AX
an(f()AF(mA)?” =f,(x) R R Ax™AX"
Hence:
Fon(X) = f,()R, R (5.8a)

We say that F(x;Ax) is invariant under the coordinate-transformation x’ = x’ (X) if only it
is true that:

F(x; Ax) = F(X; AX) = F(X; AX) (5.8b)
From the definition 5.8b we imply that F(x;Ax) is invariant under the coordinate-
transformation x’ = x’ (x) if only:

fron(X) = Fp(X) = F,0OR, R (5.8¢)
B) 5.8c is a sufficient and necessary condition for F(x;Ax) to be an invariant function under

the mentioned coordinate-transformation.
Assume that the quantities f,(x) in the analytic expression of F(x;Ax) are constants; i.e.

they are independent of x: f,(x) = f, = constant
In that case the real function F(Ax)=f; Ax'Ax? is invariant under a subgroup of the
diffeomorphic group Diff(Rg) of coordinate-transformations. According to 5.8c, the Jacobian
matrices of these transformations are to be determined by the conditions

fy = RIF4R; (5.9a)
Or, in matrix-form:

AT

[fif] - [RL} [ka][Rﬂ (5.9b)

In Appendix 1 we show how to create a subgroup of coordinate-transformations, which leave

invariant scalar fields of specific type, defined on 2-dimensional Euclidean or pseudo-
Euclidean spaces.

Euclidean coordinate-transformations in a 3-dimensional Euclidean space
In Cartesian coordinates, the matrix-elements of the metric tensor in every tangent space of
a 3-dimensional Euclidean space are given by the relationships:
gy =X X; =0,
The symbols x;, j=1,2,3 stand, as usually, for the elements of the “natural” basis defined
in paragraph 1.
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The norm As of any vector Ax = xijf e T,R’ is calculated by the equation:

AS? = g A Ax = (Ax) +(4x3) + (Ax?) (5.10a)
Assume a coordinate-transformation x’ = x’(x) of the Euclidean space R; which leaves the
analytic form of 5.10a invariant. If such a coordinate-transformation exists, we should
have:

As® = g, AXTAX" = (AX') + (AX*) + (AXP) (5.10b)
The coordinates of any tangent vector expressed in the two systems are related by the
equations:
AX™ = R}”ij
The matrix [R] | is the Jacobian of the transformation: X’ = X’(x)

It is expressed by the relationship:

[Rﬂ - [aj)_(m]

According to 5.10a and b, the matrices of the metric tensor in the two coordinate systems
are identical to each-other:

[QJJ - [g,-j]

For any case of Euclidean or pseudo-Euclidean space, the metric tensor when expressed in
Cartesian coordinates is independent of the position of the corresponding tangent space.
Hence, to find the group of coordinate-transformations that leave the matrix of the metric
tensor invariant, we have to apply equation 5.9a:

9y = R[kgklR_lj 1 9y = RikRkj
g--éi = RrinRikRkj / éjm = 6:7Rkj

Ji' 'm
D T
R,=R,=R, (5.11a)
Or, in matrix form:
-1 T
[Ri] =[Ru] (5.11b)
RU d?fg"’"R}17
From 5.11a, we obtain:
gnjéjm — ganij
R =R™" =RT (5.11c)
Or, in matrix form:
-1 AT
[R.] =[R] (5.11d)

Equations 5.11a, b, c and d hold for any case of constant metric tensor. Hence they are true
for a Euclidean space too; i.e. for the metric tensor:

|:§U'J - [gu] - [50']

Or for a Minkowski space:

1 00
[gka = [gjk] =01 0
0 0 -1

33



Equations 5.11a and b say that the inverse of the Jacobian matrix [Rjk] of the coordinate
transformation that leave the metric tensor invariant, equals the transpose of the same
matrix. The same is true for the matrix | R} ] according to 5.11c and d.

From 5.11b we imply that:

[RTUJ[RU’] =1

det[R, ] =1

The matrices [R;] with determinant +1 are called orthogonal and the corresponding

coordinate-transformations are called isometries. For the case of the Euclidean space R;
the isometries are the Euclidean transformations or rigid motions. For the case of the
Minkowski space R; the isometries are the Lorentz transformations (Appendix 1).

Example 5C
Linear maps on the tangent spaces of the Euclidean plane (I)

In the examples 5C and 5D we verify the results of the proposition 5.1 for the case of a

specific linear map Ap defined on the tangent spaces of the Euclidean plane. We calculate the
matrices [ajk.] and [akj] of Ap in Cartesian and polar coordinates. We confirm that the scalar

field F,(x;Ax) = Ax - (A,(4Ax)) has the same value in the two coordinate systems.

Consider the linear map A, defined on the tangent spaces T,R. of the Euclidean plane.

Assume that in Cartesian coordinates, in every T,R; the matrix [af

J of Ap is determined by

the equations:
A(x,) =Xx,, A(X,) = -X, +2X,

According to 5.6a, we imply that the matrix | a¥

j
=3-(% %)-( )
J 2 2
a a 1 2

What about the matrix [aij of Ap?

| of Ap is given by the expression:

The coordinate system we are working is Cartesian, so we have that:
XX, =0,

Hence, by 5.6b we infer that the matrix |a, | is given by the same form:

2]-(7 3)

We shall see in the following example that the two matrices are getting different forms when
we are working in a polar coordinate system.

The linear map Ap transforms any vector Ax e TPRj with coordinates Ax', Ax? to another

vector Ax’ with coordinates Ax™, Ax” with respect to the same basis.
The coordinates of the two vectors are related by the equations:
AX' = A(AX) = A(X;Ax7) = A(X,)AX7 = x,a;Ax’ = x, AX™
Ax' = &y Ax? (E5C.1)

Or, in matrix form:
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Axt) (0 -1\(Ax

Ax?) (1 2 )| ax?
Calculation of the scalar field F, in Cartesian coordinates:
F, (x; Ax) = Ax - (A,(4X))
F,(x;Ax) = Ax - (A (AX)) = x; - X, AX’aAX" = g a,Ax’ AX" =
= a,AX’AX" = —~AX*AX® + AXPAX' + 20X Ax* = 2(AX° )2

F, (x; Ax) = 2(8x%) (E5C.2)

Example 5D
Linear maps on the tangent spaces of the Euclidean plane (II)

In this example we find the explicit form of the matrices [a’.‘

and | a,; | corresponding to the
7] and [a,]

linear map Ap of the Example 5C, in polar coordinates.

We have shown that in Cartesian coordinates, the matrices [af] and [ak]] of A, are

identical:
0 -1

k
(2] =[ay] = (1 2)
In a polar coordinate system [a}] and [a, ] transform respectively, to the matrices [&/ |
and [, | (relations 5.7a and b).
The Jacobian matrices [R; ]| and [R,] of the transformations relating the Cartesian to the
polar coordinates are to be found in Example 5A. After some calculations we find that:

2 - o
2(sinx?) X" (-1+sin2x?)

5] = (E5D.1a)
4] %(usinzyz) 2(cos %)’ °

2(sinx?)  x*(-1+sin2x?
EAE (sin %) X (esi Xz) (E5D.1b)
X'(1+sin2%’)  2(x"cosx?)

Given that the metric tensor of T,R: in polar coordinates takes the form ( see Example 5B,
relation E5B.2):

_ 1 0
|:gmn:| = [0 ()—(1)2j
We are able to confirm the identity:
ékj = gknE;
Remark: Notice that in polar coordinates:
a) The matrices [&/ | and [&, ] are not equal

b) The matrices [&/] and [&, ] of the linear map A/ T,R; are functions of x

Calculation of the scalar field F, in polar coordinates:
F'A ()_(; A)_() = AX - (AP(A)_()) = §jk5,fA)_(jA)_(” = 5jnA)_(fA)_<”
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We use E5D.1b and E5A.3 (see Example 5A); after some tedious calculations we find that:

F,(%; A%) = 2(sin®?)" (A%*) + 2% sin2% AX'AR? + 2(%* cos %) (AR =

= 2(sin>_(2 )2 (cos X2 Ax' +sinx? Ax? )2 +

= o - N 1 L _
+2x' sin2x? (cos X2 Ax' +sin X2 sz)_—l(—smx2 Ax' + cos X2 sz) +
X
2( 1 2 2
+2()"<1 cos?z) (_—lj (—sin)?2 Ax' + cos X2 sz) -
X

= 2(Ax2)2
The comparison of this result, with equation E5C.2 leads us to the expected conclusion:
F,(x; Ax) = F, (X; AX)

Invariant forms under the group of the isometric transformations

In the present paragraph we examine the changes in the analytic expression of the forms
implied by a coordinate-transformation. The concepts “area” and “volume” in the 3-
dimensional Euclidean or pseudo-Euclidean spaces are defined as the invariant 2-form and
3-form, respectively, under the group of the isometric coordinate-transformations.

Transformations of the 1-forms under a general diffeomorphic coordinate-
transformation
Consider the diffeomorphic coordinate transformation X’ =Xx’(x) in a 3-dimensional

Euclidean space.

As usually, we symbolize by x the triples that determine the points of the space in a
Cartesian coordinate system; the matrix-elements of the Jacobian of the transformation are
determined by the equations (paragraph 5):

R} =0, X’
We recall the properties of the 1-forms defined in paragraph 3 and verify that:
dx*(Ax) = AxX* = REAX = RS dX/(Ax)
Ax = x,Ax’ = X, AX’ = AX € T,R]
By definition, the 1-forms dx*, k =1,2,3 satisfy the relationships:
dx* (X,4%7) = AX*
Hence, we have:
dx* = Rydx’ (6.1a)
In the X -coordinates the 1-forms dx, stand for the transformed dx, 1-forms:
ax, (A)?) = X, - Ax = g, AX"
We have:
dx;(Ax) = x, - Ax = R} X, - AX = Ry dx, (AX)
Hence:
dx; = R}‘d)‘(k (6.1b)
dx; = gjkdx" = gjkﬁ,’jd)?” = Ejnd)?”

dx. = g,dx* = g, R“dx" = R_dx" (6.1¢)
j_gij _gjan - an
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We define as vector 1-form & on R; every linear map with domain any tangent space
T.R;, x € R; and range in itself, with analytic expression:

w = x, fJ(x)dx“

The action of @ at any Ax € TR} returns the vector:

W(Ax) e TR : &(Ax) = x, ] (x)Ax*

How does the analytic expression of @ change under a coordinate-transformation of the
Euclidean space?
Let us write @ in the X -coordinates, as follows:

@ = X, fJ(x)dx"
The transformed vector 1-form @ is determined by the condition (see paragraph 5):
@(Ax) = o (4X) (6.2)
Relation 6.2 implies that the quantities f/ (x) transform according to the rule:
fr(x)=RIfJ(x)RE (6.3)
We say that @ is invariant under the group of Euclidean transformations if only f/(x)
satisfy the condition (see paragraph 5):
() = (%) (6.4a)
fr(x) = E}’ fI(xX)RE (6.4b)

Relation 6.4b holds for every orthogonal matrix [ R/ ].

We define the identity-vector 1-form:
dx: TR > TR}, dx = x dx*
def
It easily verified that:
dx(Ax) = Ax
The vector form dx is the identity map of T R. on itself. For any coordinate system we can
show that
dx = x,dx* = x,dx* =1d

Obviously, the identity vector 1-form is a solution of 6.4b; consequently it is an invariant
vector 1-form on the Euclidean space.

Now, let us find a less trivial invariant vector 1-form, for the 2-dimensional Euclidean space.
Conjecture that there exists a vector 1-form with fkj(x) =constant, j,k=1,2 that is
invariant under the isometric transformations of the 2-dimensional Euclidean space.

Then the quantities f/(x) should satisfy the equations (6.4b):

fr= ﬁj’.’ f/ R

In matrix-form:

[7]=R[#/]R

In the case that R is an infinitesimal isometric transformation, we have (Appendix 2):
R=1+0¢p

[0 ]=(I-0pQ)[f]](I+00Q)
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We keep terms up to the firs order:

[#]=[R]+o0[[7].2]

0 (6.4¢)

(7] 2]
The commutator is defined by the relationship:
[7].2]z[r]2-2[#]
According to Appendix 2:
o~ 0 -1
1 0
The solutions of equation 6.4c satisfy the conditions:
f22 :fllza, f12=—f21=b
It is a matter of some tedious calculations to verify that the following equation is true:
a -b) (cosep singp\la -bl(cosp -sing
b a -singp cos@ /b a ){sing cos
For any isometric transformation with Jacobian matrix:

R cos@ -sin@
singp cos@

We conclude that the vector 1-form with the following analytic expression is invariant under
the isometric transformations of the 2-dimensional Euclidean space:

= Q(x,b + x,a)dx" +(x,b + x,a)dx*
The linear transformation 2 satisfies the conditions:
Q(x,)=-x,, 2(x,) = x,

Transformation of the 2-forms under a diffeomorphic coordinate-transformation
Invariant 2-forms under the group of the Euclidean transformations
Definition of the area-form
In Cartesian coordinates, a vector 2-form defined on the 3-dimensional Euclidean space has

the analytic expression:
o? =X L (x)dx* A dx"
The basic 1-forms dx/, j=1,2,3 are defined on the tangent spaces of the Euclidean space
(see the previous sections of the present paragraph).
Under a coordinate-transformation X’ = x/(x) the mentioned 2-form transforms to the
following:
W® =X, £7(X)dX? A dx°
By using the transformation rules for the basis-elements and for the 1-forms dx’ we find
that the quantities £,7 () are related to the f/ (x) according to the identities:

7 (X) = R7fL (X)RERD (6.5b)
We say that the vector 2-form @? is invariant under the coordinate-transformation
X7 = x’(x) if only the following conditions are satisfied (see relations 6.4a and b):
fra(X)=1f72(X)=R] 1 (x) Rj R}

meyo m £j Dk

(R =R ()R] (6.6)

Proposition 6.1

Consider the vector 2-form:
dA = x, -dX® AdX + X, - dXP AdXT + X5 - dX A dX? (6.7a)
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The form dA is invariant under the group of the Euclidean coordinate-transformations of the
3-dimensional Euclidean space (see paragraph 5).

Steps to the proof
According to 6.1a, b, c and the transformation properties of the Jacobian matrix [R,ﬁ]

referred in paragraph 5, we can verify the following identities:
dx’ A dxX® = RIRYdX? A dx* = (RIRS - RERY ) dx* A dX? +... =

= D(R;)dx1 Adx® - D(Rzl)dx3 A dx*t +D(R11)dx2 A dx?

dx* Adx® = det[R]|(Ridx" A dx® + Ridx> A dx* + Rldx* A dx’)

We have seen that for the group of the Euclidean coordinate-transformations, the
determinant of the Jacobian matrix [R/ | is +1. The matrix [R/] and its inverse [R | satisfy

the relation I?J‘F = R/ (see paragraph 5). Hence we have:

dA = X,dx2 A dX® + X,dX° A dx* + X,dX" A dX? =

= X, Rl (RPdx* A dx? + Ridx® A dx" + Ridx® A dx®) +

+X, Ry (Rydx" ndx® + Rdx® adx* + Rydx® A dx®) +

+x, R (ﬁg’dxl Adx? + R2dxX® A dx* + Ridx? A dx3) =

= -[dx1 ndx® - (RIR])+dx* A dx® - (RIR)) +dx® A dx' (ﬁlezf)]+ =
=X, -dx* AdXC + X, -dx® AdX + X, - dXt Adx? = dA

We conclude that dA is invariant under the group of the Euclidean coordinate-
transformations of the 3-dimensional Euclidean space.

Remark: It is easily confirmed that the invariant 2-form dA defined by 6.7a can be written:
dA = %ejk,xj dx A dx’! (6.7b)

The antisymmetric symbol €/, is defined in the Appendix 2: it takes the values +1 if the

permutation (j k |) has positive parity, -1 if it has negative parity and it is equal to zero for
any other case > (®),

In Appendices 1 and 2 we have shown that an infinitesimal orthogonal matrix R is written:
R=I+&R2,€—-0

The matrix 2 is antisymmetric. For coordinate-transformations corresponding to
infinitesimal orthogonal matrices, the conditions 6.6 take the form:

f Q] + Q0 = Q7 (6.8a)
. 1 ,
It is a matter of simple calculations to verify that if we set 4, = EE’,(, the equations 6.8a are

1 , .
been satisfied: the quantities Eejk, are solutions of the equations 6.8a.

[}
The 2-form dA which is invariant under the group of the Euclidean coordinate-
transformations is defined as the area-form in the 3-dimensional Euclidean space.
Assume two infinitesimal vectors:

Ax, Ax < TR
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The action of the area-form dA on them returns the number:
dA(Ax, A,x) = %ajk, X, - AXE A DX (6.8b)
The quantity dA(Alx,Azx) is defined as the area of the infinitesimal parallelogram

n, [Alx,Alx] (see paragraph 4). The area of the infinitesimal parallelogram determines the

area-element on the 3-dimensional Euclidean space.

3-forms

We define the 3-forms w!> on a 3-dimensional Euclidean space as the antisymmetric tri-
linear maps determined by the relation:

w® = hy (X)dx" A dx? A dx* (6.9a)
The quantities h, (x) are real functions defined on the Euclidean space.
Given that the indices i, j, k take values 1, 2 or 3, relation 6.9a takes the form:

) = h(x)dx' Adx? Adx® (6.9b)
h(x) = " h,, (x)

The action of w(® at the vectors A x, A x,A,x € T R; returns the value:
o (A x, Ax, Ax) = h(X) €, Ax AXx A X" (6.9¢)

The value of the quantities ¢, , €% equals to zero if any two of the values of j, j, k are
- - /k - - 123
equal; for / # j# k the value of €, , €™ equals to the parity of the permutation: i ik

Steps to the proof
The following identity holds:

dx' A dx? A dx (Ax, 4%, 8,x) = X B,x7 B xKdx* Adx® A dx® (x,, X, X,) (6.9d)

1 2 3 _ 123
dx* ndx® A dXP (X, X, X,) = €77 = € (6.9¢)

Then, by combining 6.9b, d and e, we obtain 6.9c.

A relation between 2 and 3-forms - The Stokes theorem
In the present part of paragraph 6 we define the concept of an infinitesimal parallelepiped in
the 3-dimensional Euclidean space and we integrate a 2-form on its boundary. By evaluating
the result of the integration, we come to the definition of the exterior derivative of a 2-form.
A formulation of the Stokes theorem is also resulted, that relates the 2 and 3-forms in a 3-
dimensional Euclidean space.

Let Ax,A,x,A,x € TR, be three linearly independent infinitesimal vectors. The point x and
the mentioned vectors determine an infinitesimal parallelepiped 1, [A X, A, x, A,x] with vertex
at x; when Ax, A x,A,x — 0 the parallelepiped degenerates to the point x.

Consider the 2-form:

0 = p, (x)dx? dx*

Let us integrate it on the boundary on, [A X, Ax,A,x] of the determined infinitesimal

parallelogram (figure 6.1); by applying the mean value theorem (see paragraph 4) and
keeping terms up to the third order with respect to the infinitesimal quantities, we obtain:
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w? = gg Py dx’ A dx* =
on, [4x,4,x,43X] o, [Ax,4,x,43x]

=P (x)(dxj A dx")(Alx, A,x) =Py (x) (dxj A dx")(Azx, AX)— Py (x)(dxj A dx")(A3x, Ax)+
+0y (X + A,x) (dx? A dX) (A, A,x) + Py (X + Ax) (dx? A dx*)(A,x, Ax) +

+py (X + Azx)(dxj A dx")(A3x, AX) =

=P, (X) el AXT AXS - p, (X)E5 DX AXS — p, (X)E5AXT AXE +

+P, (X + AX) el AXT A XS + Py (X + AX) el AX AXS +p, (X + Ax)ENAXT AXS =

= 0,0, (X)[ €M AX D XN DX + €l AX A X7 AXK + €4 A X DX AXF |

We expand the summations in the brackets of the last expression and we end up with the
result:

0P =0,p, (X)ENAX AXTAXS = 0,p, (Xx)dX' Adx? AndX"(Ax,A,x,Ax)

p
o, [Ayx, 8%, 03]

X+A,X+AsX

X+A X+A5X

X+AX
Figure 6.1: An infinitesimal parallelepiped in the three-dimensional Euclidean space. The
parallelograms of its boundary are oriented to the exterior of the parallelepiped.

We define the exterior derivative of the 2-form w{ = p, (x)dx’ A dx* to be the 3-form:

day? def d (pjkdxj A dx* ) = 0P (x)dx’ A dx’ A dx”

The results of the previous calculations are summarized to the derivation of the identity:
do®? (Ax,Ax,Ax) = lim <J.> o (6.10)

x,0,x, 03x—0
AX 45X o, [Ayx, Ayx, Asx]

Assume a compact connected subset Rs of R] with its boundary S =0R. being a closed

surface in the underlying space. We are possible to approximate Rs by the union of a
collection of infinitesimal parallelepipeds, in analogy to the procedure we followed in
paragraph 4 (figure 4.2). Then, from 6.10 we obtain the following relation, which is another
special case of the Stokes theorem:
[ dw® =§ o (6.11)
RS

oRs
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Transformation of the 3-forms under a coordinate-transformation

Invariant 3-forms under the group of the Euclidean transformations
The volume element in the Euclidean spaces
We derive the transformation-rule of the 3-forms in a 3-dimensional Euclidean space,
induced by any coordinate-transformation. Then we define the invariant 3-forms and we find
out the subgroup of the coordinate-transformations that leave invariant the 3-forms; as a
result, we are led to the definition of the volume-form and the elementary volume in a 3-
dimensional Euclidean space.

Assume the 3-form w{’ = h(x)dx* Adx* Adx® on R; expressed in Cartesian coordinates.

Let X/ = X’(x) be any coordinate-transformation.

The 3-form o® transforms to the 3-form @® = h(X)dx' A dx*> Adx® determined by the
condition (see paragraph 5):

o (Ax, 4,%, Ax) = 0P (A X, AX, AX) (6.12)

The 1-forms dx* transform according to the relations 6.1a; so we can write:
0P =P = h(x)dx" A dx* ndx® = h(X)R} R} R? dx’ A dX* ndx' =
— h(x)R R? R} €, dX' A dX* A dX° = h(x)det RdX' A dX> A dX° =
= h(x)dx* A dx? A dx®
. J _ . _
The quantities R/ = %dzf d,x’ are the matrix elements of the Jacobian matrix [Rf] of the
X e
transformation: x’ = x’(x)
We conclude that under a general coordinate-transformation of R; the 3-form «{”
transforms according to identity:
W = h(x)dx" A dx® Adx® = h(x)det Rdx* A dx* A dx® = h(X)dx* A dx* A dX* = &P

h(x) = h(x)detR (6.13)

When a 3-form of R; is said to be invariant under a coordinate-transformation?
The 3-form w{” = h(x)dx' ~dx* Adx’ is invariant under a coordinate-transformation if only
it is transformed to the form:
@f = h(x)dx' A dx* A dx*
I.e. w{ is invariant under a coordinate-transformation if it is true that
h(X) = h(x)detR (6.14)

We have seen that the determinant of the Jacobian matrix R = [Ef] corresponding to any

Euclidean coordinate-transformation in the Euclidean space R; equals to the unity:

detR=1

Hence in the Euclidean space R; the 3-forms which are invariant under the group of the
Euclidean coordinate-transformations of R; are the forms that satisfy the condition:
h(x) = h(x) = h = constant

By choosing the appropriate system of units, we set h=1 and we define the volume-form in
R; to be the 3-form:
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Q =dx' Adx? Adx® (6.15a)
The action of the volume-form Q at the infinitesimal vectors A x, A,x, A,x € T,R: returns the
volume-element of the infinitesimal parallelepiped m, [A X, A,x,A,x] (see the previous

section of the present paragraph).
It holds that:

Q(Ax,0,x, AX) = €, A x A X AX" (6.15b)

Invariant 2 and 3-forms in the 3-dimensional pseudo-Euclidean space
In the preceding sections of paragraph 6, we defined the area-form and the volume-form of
the 3-dimensional Euclidean space, as the forms which are invariant under the group of the
Euclidean coordinate transformations. We found out that these forms are given respectively
by the expressions (relations: 6.7b, 6.15a):

dA = lei,x.dxk A dx'
2 J
Q=dx' ndx* AdxX®
We are going to repeat the same task for the case of a 3-dimensional Minkowski space: we

proceed to derive the 2- and 3-forms of the Minkowski space R;} which are invariant under

the Lorentz transformations. We end up to the definition of the area-form and the volume-
form in a 3-dimensional Minkowski space.

We know that the isometric coordinate-transformations of the Minkowski space R; are the

Lorentz transformations; which 2-form on R} is invariant under the Lorentz coordinate-

transformations? How do we define the area-form in a 3-dimensional Minkowski space?
We try to answer relying on the condition 6.6: the general sufficient and necessary condition
that an invariant vector 2-form @&® =X, ] (x)dx* A dx" should satisfy is expressed by the

equation:

f(X)R? = R f1(x) R[j

We restrict our investigation to forms that: (a) are invariant under the group of the Lorentz
transformations and (b) they have the same expression at any tangent space; i.e. in
Cartesian coordinates, the quantities f/, are independent of x:

@® = x; f] dx* Adx"

Hence, in order that @® be invariant under the group of the Lorentz transformations, the
quantities f should be solutions of the equations:

f R =R f) R (6.16)

kn " *p
We are trying to solve the system of the equations 6.16; in order to simplify them we
assume an infinitesimal Lorentz transformation. The corresponding Jacobian matrix

R = [R,ﬁ (x)} is infinitesimal (see Appendix 1) and takes the form:
R=I+e2,c->0

Regardless of the form of the metric tensor g=|[g,(x)] the Jacobian matrix R of an
isometric coordinate-transformation x’ = x’ (X) satisfies the condition (see 5.9a and b)

g=RgR (6.17a)

Hence, for the infinitesimal isometric coordinate-transformation, we obtain the following
relationships:
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g-= (I+£Q)Tg(I+£Q)
gR+Qg=0

9,9 + 2779, =0 (6.17b)
For the case of the Minkowski space R;} the metric tensor in Cartesian coordinates, is
determined by the matrix:

100
[g]=|0 1 O
00 -1

We substitute in 6.17b and we solve the ensued equations for the unknown matrix elements
of ©Q-matrix; we result that:

Q=@ - -0

QL+ =0
Q-2 =0
Q-2 =0
0 -0 o
Q=0 0 o (6.18)
w o 0

Now, we apply 6.16 for the case of the infinitesimal transformations R =1+ &2 and we are
led to the equations:
m k£m mgj
foaS2 + 2 f5 = Q7' (6.19)
We presume that the invariant vector 2-form da for the 3-dimensional Minkowski space is
given by an expression similar to the area-form dA of the 3-dimensional Euclidean space;
we write:
da =f', x, -dx’ ~ndx* + % x,-dx' ndx™ +F3 x;-dx? A dx?
We then obtain the following solution of the equations 6.19:
f111:f112:f121:f113:f131:f212:f221:f232:f223:f222:f313:f?51:f22:f323:f333:0
f123 :f231 :_f312 :f:;1:_f132 :_f213:A
For a certain system of units we set A =1 and we come to the following assertion, which we
are going to prove:
The subsequent 2-form is invariant under the Lorentz coordinate-transformations of a 3-
dimensional Minkowski space:
da=x, -dx’> ndx’ +x, -dx*> ndx' - x, -dx' A dx? (6.20)

Steps to the proof

Assume a Lorentz coordinate-transformation x’ = x’ ()_() with Jacobian matrix: R = [Rg (x)]

We use the properties of the matrix R = [R,{ (x)] referred in paragraph 5 and we obtain the
consequent identities (see: proof of the proposition 6.1):
dx* ndx’ = RIRJdX’ ndx* = (RIR; - RIR})dX' A dX® +... =
= D(R})dx' ndx* —D(R})dx* ndx" + D(R})dx* A dx’
dx* A dx’ = detR(RldX' A dx® + RidX> A dX' + RidX* A dX*)
Hence, the 2-form da is transformed as follows:
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da = x,-dx’ Adx’ + x,-dx’ Adx' - x,-dx' Adx® =

= X, R} (RdX" A dX* + RIdX* A dX® + RIAX® A dX') +

+X, R (Rodx* A dx* + Ridx* A dX* + RIdX® A dX*) -

-X R (RdX' A dx* + RdX* A dX* + RidX® A dX') =

= X, [(RIR? + RIRS — RIR3 )X n dx? + (RER? + RER? — RER ) dX* A dx + (RIR? + RIRS — RIRS ) dx® A dx* | +

+X, o[ (RERY + RER] — RIRS ) dX* A dX® + (RIR! + RER] — RER}) X n dX° + (RERY + REZR] — RARZ ) dX® A dx* | +

X, [ (RIRY + RIRS — RIRZ)dX* A dx? + (RIR! + ROR} — RIR})dX* n dX* + (RIRY + RIR] — RIRZ)dX® n dX* |
Under the Lorentz coordinate-transformation x’ = x’ (X) the metric tensor of each tangent
space T R} is invariant:

Gy = GomRIRY

gijﬁé =G,mR’

gijﬁé =9g,..R

From which, we imply that:

RI=RL,R =R, R =-R,R =R, R =R, R =R, R =R, R =R, R} =R;]

We apply these properties of the matrix [R;”] to the previous analytic expression of da and
we find that:

da = X, -[RIRAX" A dX* + RIRAX® A dX® + RIRAX® A dX* |+

+X, [ RIRdX* A dX* + RIRAX® A dX® + RIRYdX® A dX* |+

+X; - | RIRX" A dX* + RIRAX® A dX® + RIRZAX® A dX' | =

= X, d%* A dX® + X, - dX® AdX! + X, - X' A dX? = da

The invariant vector 2-form da is called the area-form in the Minkowski space R;

To find the volume-form in R; we follow a treatment analogous to that for the case of the
3-dimensional Euclidean space. We can easily verify that the 3-form of R} which is invariant
under the Lorentz coordinate-transformation is given by the expression:

Q=dx' ndx* AdxX’

The 3-form Q is the volume-form in the 3-dimensional Minkowski space.

The action of the volume-form Q at the infinitesimal vectors Ax,A,x,A,x € TR} expresses

the volume-element of an infinitesimal parallelepiped 1, [A x, 4,x, A,x] and is calculated by

the relation:

Q(Ax,Ax, AX) = €, A x A X AX"
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Chapter 2
Key concepts

Simple surfaces - Curves on a surface - Tangent spaces of a surface S - Basis-vectors of the
tangent spaces of S - The metric tensor on the tangent spaces of S - 1 and 2-forms defined
on the tangent spaces of S - Integration of an 1-form on a curve of S - Exterior derivative of
an 1-form - The Stokes’ theorem - Vector Fields on a surface - Parameter transformations -
Invariant 2-forms on S - The area-form on S - The geometric surface - Connections in the
geometric surface - Infinitesimal displacement of a vector on a surface with respect to a
connection - Covariant differentiation of a vector field - Connection compatible with the
metric tensor - Parallel displacement of a vector field - Curvature of a geometric surface -
Geodesic curves on a geometric surface - Frame fields - Connection forms - Geodesic
curvature of a curve on a geometric surface - The Gauss-Bonnet theorem

7. Geometric features of a surface

In this and the following paragraphs 8 and 9 we study the geometric features of a surface
immersed in an underlying 3-dimensional Euclidean space. We borrow the main concepts
from the discussed geometry of the Euclidean spaces and we develop the geometry of a
surface by using the same tools and treading on a similar reasoning path. The goal is to
become acquainted with the main geometric concepts we have introduced up to now by
applying them to the study of a surface; our perspective is to get a deeper level on this
subject which will be achieved by the paragraph 10 and then.

Simple surfaces in Euclidean or pseudo-Euclidean spaces
We define a simple surface (V" (2 3 (we call it simply: “surface”) S in a Euclidean or pseudo-
Euclidean 3-dimensional space a set of points P, which, in Cartesian coordinates, is
determined by the vector-function:

x' = x (U, u?)
S:ix? = x2 (U, u?)
x* = xS, u?)
In brief, we symbolize:
S x=x4(u)
The ordered pairs u=(u*,u?) run an open set B of the plane R>.
The map X, : B - X, (B) = R; has the following properties:

a) It is 1-1 and differentiable at least up to the second order.

. _ OXg _ 0Xg . .
b) The vector-functions alxsdzfﬁ,azxs 0 are linearly independent throughout the
domain B.
Remarks:
a) From now on, the Latin indices will run in the set {1,2,3} and the Greek indices in the
set {1,2}.

b) In simple surfaces there is a 1-1 correspondence between the points P, of the surface
and the couples u=(u',u?) of the domain B. The geometric properties of a surface S arise
from the geometric structure of the underlying Euclidean or pseudo-Euclidean space and
the analytic expression of the surface.

c) In Cartesian coordinates, a surface of revolution (" ) S, immersed in a Euclidean space,
is given by the analytic expression:
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x* = f(u*)cosu?
S, 14x* = f(u*)sinu’ (7.1)
)(3 — le
The domain B of the parameters u=(u?,u?) is the set
1,2 _ _
u= (u U ) e Bdgfgz[Znn,Z(n+1)n)®( b,b)

The real function f(u?) is differentiable at least up to the second order.

Curves on a surface
Any curve lying on the surface S:xf:xsj(ul,uz) is the image of some curve

a:u’ =a"(t), u=1,2 lying in the domain B of S (the parameter t runs an interval I of the
real numbers R).

We symbolize the image of a on S with the corresponding capital letter A. The analytic
expression of the curve A is determined by the relation:

A=xg0a: Alt) = (xs - a)(t) = xs (a(t))
We frequently use the symbolism:
At) =(A' (), A1), A1) = (X'(£), X°(t), X (1))

A=xgeoa:x (t)=x/(a'(t),a (t))
t), & (t)) (7.2)
(

Remark: Curves on a surface of revolution
If our surface is a surface of revolution (Sf), the analytic expression of the curve A on S is:

x*(t) = f(& (t))cos(a* (t))
A=xs oa:ix’(t)=f(a’(t))sin(a"(t)) (7.3)
X3 (t) = a*(t)

Tangent spaces of a surface S
Consider a surface S immersed in the space the 3-dimensional Euclidean space determined
in Cartesian coordinates, by the analytic expression:

S:x) =xJ (U, u?)

We define the tangent space of S at an arbitrary point P, of S as the set of the vectors
& e T,R} which are tangent to some curve of S passing by P,.

We symbolize the tangent space of S at any of its point P,, with the alternative symbols:
TPUS, TS/ TS

Xs(u)
For example, let x, - a: x’ (t) = xg’ (a1 (t),a (t)) be a curve on S passing by P,, such that:
a (0)=u', a(0)=u?

Then:

a) The point P, is determined by the triple:

Xsea:x(0)=xg (a1 (0),& (0)) = X (ul,uz)
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b) The tangent vector at P, is calculated by the equation:
d 1 2
£ :Exs(a (t),& (t))

c) Itholds: £eT,ScT,R;

t=0

The tangent space TPUS contains all the tangent vectors of the curves of S passing by P,, at

their common point P,.
By following “the steps to the proof” of the proposition 2.1 - paragraph 2, we can show that
the tangent spaces of S are vector spaces. Each vector space TPUS is a subspace of the

corresponding tangent space TPURS of the underlying space at the same point.

Basis-elements of the tangent spaces of a surface S
Let £ € T,S be a tangent vector to the surface S. Then there is a curve c of the parameters'

space such that its image-curve C = x; - c on S satisfies the following properties:

C=xg0C:x(t)=xs(c'(t),c*(t)), c(0) = u = (u",1?)

. x| .
=x(0)=—=2 ¢(0 7.4a
£ = x(0) o] €O (7.4a)
From 7.4a we imply that any £ eT7,S is written as a linear combination of the basis-

elements:

X (U)

e, (u)= o u=1,2

& =e,(u)c’(0) (7.4b)
We conclude that:
a) The coordinates of any vector & € T,S with respect to the basis-elements e;(u), e>(u) are
the coordinates of the tangent vector of the corresponding curve in the parameters’ space:
& =e,(u)é" =e,(u)c"(0), & =c"(0) (7.4c)
b) The tangent spaces T,S, u e B c R* are two-dimensional vector spaces; we frequently call

them “tangent planes” of S.
¢) The basis-elements e;(u), e,(u) are tangents at t=0 of the surface-curves:

X () = Xg (u1 +t, uz)

Xy (£) = Xg (ul,u2 + t)

1 2
1(u)—d—xs(u1+t,u2) :% (7.5a)
t=0
1 2
e, (u):%xS (u' 0 +t) :% (7.5b)
t=0

d) The basis-elements e;(u), e;(u) are being expressed as linear combinations of the natural
basis {x1, X2, x3} of the underlying Euclidean space:

()
e (u)=x, " (7.6a)
_, X (v)
e, (u) = x; oy (7.6b)

Remark: For the case of the surface of revolution Sf (relation 7.1) we find that:
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e (u)=—f(v*)sinu' - x, +f (u*)cosu" - x, (7.6c)

&, (u) =f'(v*)cosu' - x, +f'(v?)sinu’ - x, + X, (7.6d)

2
We symbolize: f’(uz)d=f d’;(uz )
ef du

Vector fields on a surface S
We define as vector field £(u) on a surface S any vector function determined on S which at

every point P, of S returns a vector §(u) e T,S (see paragraph 2).

An example of a vector field is given by the expressions 7.6c and d: the basis-elements
e;(u), ex(u) are defined for every point P, of S and belong to the tangent space T,S.

We assume that the vector fields we are going to deal with are differentiable functions of
both the parameters u;, u,, at least up to the second order.

The metric tensor of the tangent planes of the surface S
The Euclidean metric of the underlying space induces a metric in the tangent planes of the
surface S, as follows:
Consider the surface S determined in Cartesian coordinates by the functions:

X =xJ (v u?), j=1,2,3
Let Ax,,, g =1,2,3... symbolize tangent vectors of S belonging to the tangent plane T,S.

For some Ax,, eT,S there is a curve u (t) = (uy'(t),uy’(t)) in the parameters’ space B

passing by u: u,, (0)=u = (ul,uz) with tangent vector at u the vector:

Ay = (Aut's Ayr?) = (0 (0), 0)*(0)) At , At < R
The corresponding tangent vector of S at x(u)=xs(u) is determined by applying 7.4b:
Ayx = e, (U)4,u” (7.7a)
A,x = e, (u)u,(0)At (7.7b)
The vector A ,x is the tangent vector at xs(u) of the curve of S determined by the

functions:
X7 (t) = xs’ (”(1)1 (t), Uy’ (t))

The basis-elements of T,S are expressed, according to 7.6a and b, as linear combinations of
the natural basis of the tangent space T, R} of the underline Euclidean space. Hence it is

xg(u)

legitimate to calculate the Euclidean inner products of them according to the relationships:
oxJ (u) ox (1)

elJ (U) "€, (U) = Xj " X ou¥ ou’

Let us now consider any other vector: A, x =e¢ (uW)A,u" €T,S

We symbolize the inner product of A

(1)

X, 4,x €T,S with the symbol <A(1)X,A(2)X> and we

define it by the relation:
<A(1)x, A(Z)x> =e,(u) e (WA U A" =g, (WAL u"A,u"

The matrix-elements of the metric tensor g(u) =[g,,(u)] defined on the tangent space T,S,

with respect to the basis-elements e;(u), e>(u) are determined by the equation:
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oxg’ (u) axg* (u)
ou ou’

We have pointed out that the points of the underlying space R; are determined in Cartesian

g, (u)y=e,(u)-e (u)=x, x, (7.8a)

coordinates; hence:

X X, = 5jk

We conclude that the matrix-elements of the metric tensor g(u) are calculated by the
expression:

3 ox.’ (u) ox? (u
g, ()= 3 2 W 2T

j=1

(7.8b)

Remarks:

A) We outline a proof that the metric tensor given by 7.8b is an invertible 2x2 matrix for
any value of u.

This is due to the restriction (b) in the definition of a simple surface: the linear
independence of the row-vectors:

01Xs = (61X51,81X52,81XS3) r O Xg = (82X51,62X52,62XS3)

So, if we assume that g(u) is not invertible for some point u=( u?, u?) of the parameters'
space, then the row vectors of g(u) should be linearly dependent i.e. there is some real
number Az 0 such that:

(9111912) = A(gzll gzz)
Then, according to 7.8b, we imply that (notice that the product of quantities with the same
indices is to be interpreted as a summation with respect to the repeated index):

(0,x570,x57,0,x50,% ") = A(0,%570,x7,0,x 0, %)
0,x5’ (8,57 = Ad,xs7) = 0
0,Xs* (0,X5% = Ad,xK) = 0
The coordinates ¥/ j=1,2,3, are Cartesian; hence the previous relations can be written in the
form of dot products (Euclidean inner products) of the row vectors 9:xs=(81Xs’,81Xs>,81Xs")
and 9.xs=(92Xs",02Xs",02Xs"):
0,Xs - (0,Xs —Ad,Xs) =0
0,Xs - (0,Xs — A0,%s) =0
A necessary condition that the previous equations have a solution is:

_ 10,Xs]

102%]

By substituting in any of them we result that:

01 Xs - 0,Xs = |61X5||62XS|

But according to the Cauchy-Schwarz inequality ¢, this condition implies that the vectors
d1Xs, 9-Xs are linearly dependent; which contradicts to our initial assumption.

We infer that the metric tensor is invertible and its determinant is different from zero at any
point u=(u',u?):

detg(u) =0

B) The length of a vector Ax=e, (u)Au” =e,(u)u”(0)At €T,S is determined by the
expression:
|ax| = \[{Ax, Ax) = g, (W)Aw*Au” =|At| g, (U)o e
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Consequently, the infinitesimal length As on the curve x(t)= x,(u(t)) lying on the surface
S, is calculated by the relation:

As® = (Ax(t), Ax(t))

Ax(t) = e, (u(t))a*(t)At, At -0

As? = (Ax(t), Ax(t)) = g, (u(t)) Au*Au” = g, (u(t))a¥ (t)a" (t) (At)2 (7.9)

C) For the case of a surface of revolution immersed in the 3-dimensional Euclidean space,
the metric tensor on its tangent spaces is determined by the matrix:

Fu?)Y 0
(9. (u)]= () ) (7.10)
0 (f’(uz)) +1

1 and 2-forms on a surface
We define the 1-forms on the surface S: x’ = x//(u',u?) as the linear functions with domain

any tangent space T7,S of S and range in R (see paragraph 3).

All the properties of the forms referred in paragraphs 3 and 4 for the case of the 3-
dimensional Euclidean space, also apply for the forms defined on the tangent planes of a
surface. We repeat them here, in brief:

a) Let g, :T,S —> R be a 1-form on S. The action of y,,, on any vector § =¢, (u)§" €T, S
returns the real humber:

W) = W, (&, (WE") = i, (6, ()& = w,()&"

The real functions g, (u) v =1,2 determine the 1-form y, at each tangent plane T7,S of the

surface.
We define the vector field:

Su(W) = €,(u)5(, (W)
With coordinates (see paragraph 3):
(L) = w,(u)g¥ (u)

The matrix [g*(u)] is the inverse of the metric tensor:

[g”W)][g, ()] =8¢ ]
We can easily verify that the analytic expression the 1-form g, can be written as an inner
product:

(8 (W), E) = (&,(1), ,(W)) &L, (WE” = g, (u) g (W, (W)E" =
=9, W g" Wy, & =8, w,() & =y, W) =y, (&)

b) We define the basic 1-forms:
w, (§) =(e,(),&) = (e,(u), e, (LE") = g, (U)E"

def
W (&) = w” (e, &) = &
It holds that:
w, = gwa)v
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Furthermore, any 1-form is possible to be expressed as a linear combination of the basic 1-
forms:

l,U(f) = <§(w)’6> =& <eu’ é—> = &l @, (E)
Hence:

— H _ M v
Y= é:(w) wu - é:(qt/) gﬂvw

c) Consider a real function defined on the surface S, which is differentiable at least up to the
second order with respect to each variable:

F(ul,uz) = F(x's (), X (u), X% (u)), u = (ul,uz)
We define the directional differential of F(u',u?) at u, along the direction of the tangent
vector Ax =¢e,(u)Au’ eT,S by the relation:

o, F () = lim F(u+T1Au)-F(u)

def T>0 T

= 0,F (u)Au® (8.1)

a

Given that Ax =e,(u)Au’ eT,S there is a curve u, = c(t) of the parameters' space with the
properties:

c0)=u= (ul,uz)

&(0)At = Au = (Au', Au®), At € R

Hence, relation 8.1 is written:
F(u+T1Au) - F(u)
T

d, F(u) = lim

=lim = 0,F(u)Au® = o ,F(u)c’(0)At
The directional derivative of F(u',u?) at u is given by the equation:
d,F(u)

dt
By using the definition of the basic 1-forms w® we come to the conclusion that the
directional differential of F is a 1-form defined on the tangent planes T,S given by the
expression:

= 0,F (u)¢*(0)

d,F (u) = 8,F (u)w? (Ax) (8.2)
Consider the 1-form:
Yy = W, (U) w°
We say that the 1-form g, is an exact form if only we can find a real function F(ut,u?)
such that for any v e B, Ax € T,S itis true that:
P (AX) = dAxF(U)
According to 8.2:
Y, =dF (u) = 0,F (u)w’

Wedge product of two 1-forms: 2-forms on a surface
In accordance with what we have said in paragraph 4 about the 2-forms in a 3-dimensional
Euclidean space, we come to a similar definition of the 2-forms on a surface: any 2-form on
a surface is expressed as the wedge product of two 1-forms. Let w,,,, w,, be two 1-forms on

S; their wedge product is determined by the equation:

(@0 A @i ) (A X AyX) 2 @y (AiayX) @iy (BiayX) = @y (DiayX) @y (41X (8.3a)
AuX; DX € 1,5

52



The wedge product of two 1-forms w,,, @, -and consequently any 2-form- is a bilinear

antisymmetric map of T7,S®T,S into the set R of the real numbers.

Any 1-form is written as a linear combination of the basic 1-forms w” (see the previous
section of the present paragraph 8). Assume that:
Wy = fy (W) @”

Wiy = Fap (W) 0"
The subsequent identities arise:
@y A By = (Fiy (U ) A (Figy, (W) @") = Fiyy, (W) iy, (W) @ A 0" (8.3b)
We conclude that any 2-form ¢ can be written as a linear combination of the wedge product
w’ A w" of the basic 1-forms:
o=f, (W Aw" (8.4a)
The symbols f (u) stand for real functions defined on the parameters’ space; as usually,

the Greek indices run the values 1 and 2.
According to 8.3a, the non-identically zero wedge products in 8.4a are the next two:
W' AW, W AW = -0 A WP
We conclude that every 2-form defined on a surface S is determined by the analytic
expression:

o=Ffu)w' Aw? (8.4b)
The map f(u) is some real function of B into R.

Integration of a 1-form along a curve lying on a surface - Exterior derivative of a 1-
form - Another case of the Stokes’ theorem

The concept of the 2-forms is intimately related with the 1-forms. By following the same

reasoning path as in paragraphs 3 and 4, we show that this relation becomes clearer by

analyzing the result of the integration of a 1-form along the boundary of an infinitesimal

parallelogram of the parameters' space. This process will lead us to a formulation of the

Stokes' theorem for the case of 1 and 2-forms determined on surfaces.

Assume a curve u,, :u” =u,"(t), t e I < R in the domain B of the surface:
S:x) =xJ (v, u?)

The image of u(y) on the surface is the curve:

Xs o Uyt X = Xs (U (1)) = Xs (U " (£), Uy’ (1))

At every point of the curve X;ou, a unique tangent plane Tu( S of S is determined.

b()
Assume a certain 1-form w, = p, (u(l)(t))a)" defined on the tangent spaces Tu(l)(t)S for every t
in the interval I. The tangent vectors of the curve X cu,, as t runs I, are given by the
relationship:

2, x(t) = e, (U, () by (DAL = e, (U () Auy, () €T, (S (8.5)

Auy'(t) = Oy (H)At At R

¢
Relation 8.5 defines a vector field determined along the curve Xx;-u, of S. The value

returned by the 1-form w, at each vector A, x(t) of the field is:
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@, (43)X()) = P, (Uy () Uy ()AL = p,, (U (£)) 4" (E) (8.6)

We define the integral of the 1-form w, on the curve X, o u,, by the expression:

[ w,= | e’ = [ p,(uy®) iy @)t (8.7)
u+4,,u AU U+, u+d,u
A r
AU
u=u(t) 5 A,u B u+d,u

Figure 8.1: The boundary of an infinitesimal parallelogram lying on the domain B of S. Its image

X oon,[A,u, A,u] is a simple closed curve of S.

Let us assume that the curve u, :u” =u,/(t) is the boundary on,[4,u,4,u] of an
infinitesimal parallelogram 1,[A4,,u, A, u] of the parameters’ space B c R® (figure 8.1).
We presume that the image-curve xg-on,[A,u,A,u] is a simple and closed infinitesimal

curve on S. We integrate w, along on,[4

U, A,u] according to 8.7; we apply the mean

value theorem and expand the functions p, (u+4yu), p,(u+Ayu) in Taylor series keeping

terms up to the first order with respect to the quantities A,,u”, A(z)uﬁ (see paragraph 4).

w, = <]5 P, (U)wa =

Xg o0, [ A yu, Aoyu] Xgo0n, [ A yu, Aoy]

= Py (1) Dy ” + Py (U + D) Ays® = Py (U + Dytt) Ay = P, () Ay =
= 0P, (U) (AP Dyt = 8yt Ay ) = 0, (U)W A @7 (44X, Ay)x)
w, = gS Py ()@ = 84p, (U) WP A @ (AyyX, AyyX) (8.8)
Xgoon,[ Ay, Aoyl Xg o0, [Aqyu, Aoyl
From 8.8 we come to the definition of the exterior derivative dw, of the 1-form
w, = p, (u)w? as the 2-form given by the expression:

dw, = 8,p,(L)w* A w° (8.9)
The combination of 8.8 and 8.9 leads to the equation:
dw, (DX, DyX) = 05P, (1) @0° A ° (DX, AyX) = gS w, (8.10a)

X500, [ Ay, Apyu]
Let us now consider a compact and connected subset R, of B. The boundary of R. is the

closed curve c=0dR. (see paragraph 4: the exterior derivative of a 1-form). The set R; is
possible to be approximated by a collection of infinitesimal parallelograms (figure 4.2). For
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any 1-form w, we apply a procedure similar to the one of the paragraph 4 and we obtain

the relationship:
@wp = fdwp (8.10b)
R, Re

Equation 8.10b is a formulation of the Stokes’ theorem for the case of 1 and 2-forms defined
on surfaces.

Proposition 8.1
The integral of an exact 1-form w, along any closed curve c of B equals to zero. Inversely:

if the integral of a 1-form w, along any closed curve c of B equals to zero, then w, is an

exact form.
Hint: The steps to the proof are similar to the ones of the Proposition 4.1

Corollary: The necessary and sufficient condition for w, = p, (u)a)" to be exact is
o,p, (U) = 8,p, (U) (8.11)

Parameter transformations - Invariant 2-forms - The area-form on a surface

In this paragraph we examine how do the main geometric concepts defined up to now on a
simple surface S, vary under a diffeomorphic transformation of the parameters. We
formulate the transformation-laws of the basis-elements, the metric tensor and the 1 and 2-
forms on the tangent planes of the surface. The area-form is defined as the 2-form that is
invariant under any parameters' transformation.

We consider the general group of the diffeomorphisms (see paragraph 5) for the
parameters' space of a surface S. Recall that each parameter transformation u” =u” (U) is

one-to-one and onto, has derivatives at least up to the second order and its inverse
transformation U* = (u) is differentiable up to the second order too.

The Jacobian matrix of the transformation u* =u* () is:

ou outy)
o1 | out  ou? o,ut o,ut
J= [Jl?] = 2 2 ldefl 342 74P
ou® ou* |%flou” o,u
out ou?

The Jacobian matrix of the inverse transformation &* =" (u) is:

ou' out
.7:[7”]: E ﬁ 2[61‘71 6201]
Plle e | \o* o0
ot o

The matrix J is the inverse of the matrix J:
ou’ ou* ou’ ou* ou” v

Hence:

Jj=J°
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Transformation of the tangent planes’ basis-elements under a parameter
transformation
With respect to the u-parameters system, the Cartesian coordinates of the points of S are
determined by the functions:

x =xJ(), u= (ul,uz), Xs(U) = (xs1 (u),x(u), x5’ (u))
Under the parameter-transformation u” = u” (U) we can write (paragraph 6):

Xs (U) = X (u(U));f X (@) (9.1)
In the new set of parameters the basis-elements of each tangent plane of S are calculated
by 7.5 and 9.1:
ox(u) ox(T) ox(U)ew’ _ , =,
ey(u)= au” = ou” = P W=ev (u) u (9.2a)

e, (u)=e, (u)Jy (9.2b)

Under any parameter-transformation any vector Ax=e,Au” €T S remains invariant,

although the basis-elements of T,S are being changed. This implies that the coordinates of
Ax with respect to the new parameters have been changed too. We write:
Ax = Ax
e Au” =e AU’ =e J/AU"
Aut = Jl AT (9.3a)
AT* = J¥ A (9.3b)

Transformation of the metric tensor
The metric tensor of a tangent plane T,S transforms according to the relations:

9y =(€,18) =€, 8T} =G, (9.4a)
G = 9y T) (9.4b)
In matrix form:
g=JgJ (9.4c)
g=71"g] (9.4d)
The determinants of a matrix and its transpose are equal:

detJ =detJ’
Hence, from 9.4 we imply the subsequent relationships:

detg = detg - (det J)2

detJ = detg

(9.5)

(Notice that detg(u) # 0 for any u, as we have pointed out in paragraph 7: the metric tensor
of the tangent planes of the surface S)

Another consequence of the equations 9.4 is that the infinitesimal length As along any
curve x(t):xs(u(t)) lying on the surface S does not change under any parameter-
transformation:

As® =g, AuP AU = §,,JfT}JEAGPTAT° = G, AT*AT" = AS?

Au* =0F (t)At, At >0
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Remark: Any set of quantities T“ (u defined on S, is called a tensor field if only under a

parameter-transformation u* = u* (U) transform according to the relation:

Tov (@) = TR2 (U) 5 () I8 () Ty (0) ) (u)-

The metric tensor is a tensor field.

Transformation of the 1-forms
To find out how the 1-forms transform under the parameters-transformation u* =u" (U) we

follow the procedure we applied in paragraph 6, where we derived the transformation-rule of
the 1-forms on a Euclidean space under a coordinate-transformation.

Consider the 1-form w, =p, (u)a)” expressed in the u-parameters. The same 1-form in the
U -parameters gets the analytic expression:

w, =P, (U)a_)v

As usually, for any Ax = e, (u)Au* = e, (U)Au” we have:

w,(Ax) = w,(AX)

p,(u) " (Ax) = p,(u) w"(AX)

p, () Au” = p,(U) A

p,(u)J Au* = p,(u) Au*

p,(u)=p,W)J; (9.6)
For the basic 1-forms w” we are getting:
w” (Ax) =Au" =J AuY = T8 " (A)"()
Hence:

w' =J'w" (9.7)

Transformation of the 2-forms - The area element on a surface
A 2-form o defined on a surface S is expressed by the relation 8.4b: 0 = f(u) ©' A w?
How does o transform under the parameter-transformation?

Let 0 = F(U)(Dl A @* be the analytic expression of ¢ in the & -parameters.

Forany A,x,4,xeT,S we have:

O (A0 Aap¥) = 0 (40%: Ao X)

FU)W' A @ (D)X, Ayx) = F (D)D" A @ (DX, A)X)

FU)TLT2 @ A @ (D)X, ApyX) = F (D)D" A @ (DX, A)X)

F) (I35 = BT7) @' A @ (DX, Ay X) = F(@)D" A @7 (43X, Ay X)
f(T) = f(u)detJ (9.8)

From 9.5 and 9.8 we imply that:

fv) _ f)

Jdetg@)  Jdetg(u))

(9.9)

The invariance of o under the transformation u* =u” (U) is ensured if only the following

condition is satisfied (see paragraph 6):
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f(@) = f(a) (9.10a)
By 9.9 and 9.10a we imply that a sufficient and necessary condition for o to be invariant
under the parameter transformation u* = u” (&) is:
fluy _ fu)
Jdetgw) |ldetg(@)|
That means that the value of the quotient f(u)/\/m should be independent of the

choice of the parameters; hence should be equal to a constant number. We conclude that
the 2-forms which are invariant under the transformations u* =u" (U) have the analytic

(9.10b)

expression:

0, = Afdetg(u) w' A w?, A = constant

We choose the System of Units so that A=1 and we define the area-form on the surface S

to be the 2-form:
a;f«/det g(u) W' A w? = \Jdetg(u) @' A @* (9.11)

The infinitesimal area da determined by the infinitesimal vectors A4,x,4,xeTS is

calculated by applying 9.11:
da = 0 (4, AyX) = Jdet g(u) @' A @? (4,,X, Ayyx) =

(9.12)
= JJdet g(u) (A u' AU - AUt Ay u? )

Example 9A

Calculation of the area of a surface of revolution and of the volume enclosed by it
Application for the case of a sphere

In the present Example we are working out two applications based on the results of
paragraph 9: a) a general expression for the calculation of the surface-area for any surface
of revolution is achieved, b) we calculate the volume enclosed by a surface of revolution in
the 3-dimensional Euclidean space by integrated a certain 2-form on it; the analytic
expression of this 2-form is obtained by applying Stokes' theorem and looking for a 2-form
with exterior derivative identical to the volume-area of the 3-dimensional Euclidean space.

a) Calculation of the area of a surface of revolution
Consider the surface of revolution in the 3-dimensional Euclidean space:

x* = f(u*)cosu?
S, 14x* = f(u*)sinu? (E9A.1)
X3 — u2
We assume that:
f(uz) >0,ueB

. df(u?
f (UZ) def dEJZ )

The basis vectors of the tangent planes T,Sr are
e, = —x,f(u*)sinu’ + x,f(u*)cosu’

e, = x,f'(u*)cosu" + x,f'(u*)sinu" + x,
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The matrix-elements of the metric tensor are:
9. = (evey = (F(«))

9,=9, =0

G =1+ (¢

9 =[g,,W)]=

el

Figure 9.1: A surface of revolution S;.

The area form on Sris:
0, = Jdetg(u) @' A @* = F(u?),1 +(f’(u2))2 W' A @
The infinitesimal parallelogram 71 [A,x, A,X] has vertex at x and sides:

wXr S
Ayx = €,40U", Aypx = €,A,U"

The elementary area of /1[4, X, 4, x] is given by the relationship:

Aa = 0, (DX, DpyX) = FNF? + 1 (AUt A — AUt A U7 (E9A.2a)
We assume that:
A, x = eAut, A,x = e,Au?
Then, E9A.2a takes the form:

Aa = FNF? +1Au'Au? (E9A.2Db)
Hence, the area of the surface seen in figure 9.1, if it exists, is calculated by the formula:
b
area(s,) = J'dulduzf(uz) 1+ (f’(uz))2 = 2nj du’f (u?) 1+ (f’(uz))2 (E9A.3)
S, -b

For the case that S;is a sphere of radius b, the function f(u?) is given by the expression:
f(u?) =B - @Y

The derivative of f(u?) is:

F(w?) = (b7 - (?y) "

We substitute in 9A.3 and we obtain the expected relation:
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b 22 \M2 b
area(S;) = 2n [ du*\b? - (u*) [1 + Lj - 21| du’b = 4nb?
b -b

b2 _ (UZ)Z

b) Calculation of the volume enclosed by a surface of revolution S by integrating
an appropriate 2-formon S

Assume a 2-form of the 3-dimensional Euclidean space R} (see paragraph 4):
w, = P, (x)dx’ A dx” (E9A.4)

Let R be any region of R} whose boundary S=0R is a surface of revolution. Then by
applying the Stokes’ theorem (relation 6.11) we obtain the identity:
$ Py (x)dx? A dx* = [a,p, (x)dx’ A dx) A dx* (E9A.5)
oR R

The volume of R is given by the integral (paragraph 6):
vol(R) = [dx* A dx® A dx® (E9A.6)
R

Is it possible to choose the form w, so that the right part of E9A.5 to be identical to the

volume of the region R? That is:
[dx* Adx® ndx® = [a,p, (x)dx" A dx? A dx* (E9A.7)
R R

We can easily verify the identity:

dx' Adx® ndx® = éa,jkdx' Adx? A dx*

Then, one appropriate choice of pj«(x) should be the solutions of the equations:

1
0Py (X) = & € (E9A.8)

A legitimate solution of E9A.8 is:
P11y = Py = P33 = 0

X3
P, =P = F
%!
Py3 =—P5; = E
X2
Py =—Py3 = ?

We result that a 2-form satisfying E9A.7 is the following:

W = %(x3dx1 AdX? + XM dx? A dx3 + x2dxE A dxl) (E9A.9)

Hence, the volume enclosed by the surface S=dR is possible to be calculated by the
expression:

vol(R) = % c_fv (x°dx* A dx® + x'dx® A dx® + x°dx® A dx*) (E9A.10)

S=0R

Let us apply E9A.10 to calculate the volume enclosed by a surface of revolution S,
determined by the analytic expression X’=xJ(u',u?).

At the right hand side of E9A.10, the 2-forms dx’ A dx’ are defined on the tangent spaces
T..wRs but act on the vectors A, x = eAu', A,x = e,Au” of the tangent planes T,S of S.

Each tangent plane T,S is a subspace of the corresponding tangent space TXS(U)RS of the

Euclidean space. Hence, in order to reform the integral at ESA.10 to a double integral with
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respect to the "free" parameters u', u?> we have to calculate the wedge-products as functions
of u', u®. We are getting:

dx* A X (Ayx, Apyx) = dX* (Dayx ) dX* (A)x) = dX* (Ayx) dx® (4,X )

j K
A x =eAu' = x; aa);sl Au', A,x =e,Au’ = x, 66)1(152 Au?
oxg' Xt
dx* (4, x) = a—leul, dx* (Azx) = ﬁAu2
xS’ xS’
dx? (4,)x) = a—uSlAul, ax? (4,)X) = ﬁAu2
3 G A . N A
ax® (Ayx) = 6_L151Au A (LX) = ﬁAu
1 > ox.tox?  ox.t ox.’ 1.2 a(xsllxsz) 142
dx* A dx (4\(1))(,A(z)x)=[au51 P e el ALY :WAU Au® (E9A.11)
oxst oxg
o(ut,u?) oxg oxg
ou*  ou?
Similarly, we find that:
dx? A dx® —a(XSZ’Xss)A 'Au? E9.A12
X? A dXP (A yyX, Dy X) = o, &) u'Au (E9.A12)
0(xs xs")
dX3 N Xm <A(1)X, A(Z)X) = a<u1—,uz)AUlAU2 (E9A.13)

We substitute in E9A.10 and we result the following relationship which is very useful and
applicable when the analytic expression of the surface is known:

o(x2, xS d(x3, xt o(xt, x2

voI(R):l q‘} du'du®| x.' ( > S)+ S ( > S)+ . ( > S)

3.9, o(u',u?) o(ut,u?) o(u',u?)

Remark: The analysis of the section b of the present example holds for any compact simply

connected surface S ‘®), The surfaces of revolution are a special case of this wider class of
surfaces (@,

(E9A.14)

Application of E9A.14 for the case of the surface of revolution determined by the
analytic expression E9A.1: Consider the surface of revolution S (relation E9A.1). We
calculate the determinants appearing at the right hand side of E9A.14:

o(x?, xS 2 3 1

( s1 f):det alx2 01x3 _ det fcc?su1 0 _ fcosut
o(ut,u?) ,X>  0,X f'sinu' 1
olx 3,X 1 3 1 _Feimgt

( s S)zdet 81x3 61x1 _ det 0 fsmu1 _ fsinut
o(u',u?) a,x°> 9, 1 f'cosu

(x5t xs%) s a,xt a,x? e —fsinu* fcosut _ e
o(ut,u?) 2,x%  0,x" f'cosu' f'sinut

We substitute in E9A.14 and we find that the volume enclosed by the surface of revolution is
calculated by the expression:
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10.

vol(R,) =5 e (v (u) - F (i) - %”fbdmf () (F(62) - F(u)?) (ESA.15)

Application of 9A.15 for the case of a sphere: A sphere can be considered as a surface
of revolution. The curve of the plane Ox'x>® which is to be revolved for creating a sphere with
radius b is the semi-circle:

Fu?) = (b2 - (W P)"

We insert this function in E9A.15 and we perform the integration. We are getting the
expected result:

vol(Sphere) = gr/b3

Another expression for the volume enclosed by a surface of revolution S; resulting
from E9A.15: By performing integration by parts at the last integral of the expression
E9A.15, we obtain:

b b b
vol(R) = 41 [ du?f? —2—”[f2u2]b o2 [ au?r? L2 [ duferu?
i7 3 3 b 39 39

We keep the restriction f(b)=f(-b)=0 (figure 9.1) and from the last equation we result
that:

b
Vvol(R,) = 2nj du*f? —vol(R;)
b

vol(R,) = nf du? (F(u?)) (E9A.16)

The geometric surface

Any point of a surface S:¥=xJ(u',u?) which is immersed in a 3-dimensional Euclidean or
pseudo-Euclidean space is determined by the values of the couple (u?, u?). In this paragraph
we make an abstraction: we try to conceive a surface S freed from the underlying space, as
an autonomous entity; we imagine that S is like a plane-space whose points are determined

by the parameters u’, u?: S>P, &> u = (ul,uz) eBcR?

The tangent spaces T,S of S are equipped with a metric tensor g(u) which is determined
arbitrarily, depending on the requirements of the problem we are working out. Certainly, the
considered metric tensor has to satisfy the definition properties of the metric tensors
determined in paragraph 7. From this point of view, we can speak of a Riemannian (or
pseudo-Riemannian) surface S. The properties of a geometric surface arise by the metric
tensor defined in the tangent spaces of the surface; by following this way of thinking we say
that we construct an “internal geometry” of the geometric surface with no reference to
any underlying space where it could be immersed.

We start the study of the geometric surfaces by summarizing its fundamental features,
ensued by the corresponding concepts we have already used in the description of the

surfaces immersed in an underlying 3-dimensional Euclidean space.

A) Tangent spaces of a geometric surface, the metric tensor the basis vector field related
with it - Curves in the parameter-space and their images to the geometric surface:
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The points of a geometric surface S (simple surface: see paragraph 7) are uniquely
determined in a certain system of u-parameters, by the couples u=(u',u?) which are taking
values in an open subset B of R?: there is a 1-1 correspondence of B on to the set of the
points P, of the surface. The geometric features of the geometric surface S are specified by
the metric tensor g(u), we have imposed on its tangent spaces. The basis-vectors of each
tangent space T,S arise by an abstract basis-vector field {e;(u),e>(u)} which is compatible
with the metric tensor i.e.:

g, (u)=(e,(u),e, (u)), u,v=1,2
The vectors of any tangent vector space T7,S of the geometric surface S are linear
combinations of the basis vectors (elements) of T7,S:

& =e, (U)s"

The real numbers &Y are the components of a tangent vector of some curve in the
parameters’ space passing by u; i.e. there is always a curve a&" = a“(t) of the parameters’
domain B such that: a“(0) = u*, a“(0) =&*

Remark: We frequently use the following symbolism (see footnote in paragraph 3): Let a be
any curve in B passing by the point u=(u?,u?), such that a(0)=u.
Let Au =(Au',Au’) = (&'(0),&°(0))At, At -0 be an infinitesimal tangent vector of a. We

symbolize the corresponding infinitesimal vector of the tangent space T,S:
AU = e, (WA = e, (u)a"(0)At

Any curve A on the geometric surface S is the image of a corresponding curve a of the
parameters’ domain B. Any point A(t) of the curve A is determined by a certain point
a(t)=(a'(t),a’(t)) of a. The tangent vector & (t) of A at any one of its points A(t)

corresponds to the tangent vector (él(t),éz(t)) of a, at a(t); it is determined by the analytic
expression:

&) =e,(at))a" () e T,,S (10.2)
The set of the tangent vectors &,(t) as t runs its domain, defines a vector field on the

geometric surface S.

The elementary length As of A at A(t) is calculated by the norm of the infinitesimal tangent
vector:

AA(t) =e, (a(t))a“(t)At eT,nS, At >0

As = [(4A(t), AA(t)) = At g, (a(t)) & (t)a" (t) (10.3)

B) Consequences of a parameter-transformation to the basis-vector field, the components of
the tangent vectors and the metric tensor of a geometric surface:

Consider the diffeomorphic transformation u” = u(d) in the parameters' space. Any point P
of S represented by the couple u=(u?,u?) in the u-parameters’ system, is represented by the
ordered pair & :(01,02) in the G -parameters.

The basis-elements e, (u),v=12 of T,S are being changed to the basis-elements
é,(d), v =1,2 in the d-parameters.

Any vector AU of the tangent space T,S is expressed as a linear combination of the new
basis, according to the relationship:
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AU = e, (WA = &,(0)Ad ;fAU (10.1)

The vectors AU, AU are identical (see paragraph 9); the different symbols suggest that they
are expressed in different parameters.
The coordinates Au', Au® of the tangent vectors are transformed according to the rule:
_ou*

oa”
The coordinates &" of any vector & =e (u)§" € T,S are transformed according to the same
rule:

ou* ¢

Tl
The basis-elements are related through the relationship:

- - oa”
e, (u)=¢ (U)W

Au” ALY

The length of any curve A in S is a geometric invariant; it is not depended on the choice of
the parameters’ system. We deduce that the elementary length As of A at anyone of its
points is invariant under any parameter-transformation. Hence, the norm of any vector
¢ =e, (u)é,”’ eT,S,PeS is also invariant; as a consequence, the matrix-elements of the

metric tensor are being changed as follows:

& = g
g,,(U)EE" = G, (0)E*E"

out ou” . o\ zkEr
(gw(u) P gKA(u)}f & =0

R ou* ou”
a) = u)—
gKA( ) gyv( )aaK aaA

The determinants of the matrices g =[g,,(u)], § =[§,,(0)] are related with the determinant

(10.4a)

of the Jacobian matrix of the parameter-transformation, according to the relationship:

- ou* ’
detg = detg| det P (10.4b)

C) 1-forms on a geometric surface:

The 1-forms on the geometric surface S are determined by the usual way (see paragraph
8):

w(§) =(EW),¢) &), (TS

We symbolize &(u) any vector field defined on S.

The basic 1-forms are defined on any T7,S according to the relations:

w,({) =(e,(), ) =9, (WG, {eTS

w’(¢) =¢"

Hence:

w, =g, (Uw"

Every 1-form can be expanded as a linear combination of the basic 1-forms:
w, =&, =g, (U)"'®"
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Under the parameter-transformation u* = u* (L?) the basic 1-forms transform according to

the following relations (see paragraph 9):

u
W = Zﬁ’v & (10.5a)
u
o
0, -6, (10.5b)

Any 1-form w, =p, (u)a)“ is transformed as follows:

p (0D =W,

w, = p, (V" = p,,(u

BB) = p, )

D) 2-forms on a geometric surface:
The 2-forms on S are the antisymmetric bilinear functions defined on the tangent spaces T,S
of S and their values being in R (see paragraph 8):

0,(8,0) = 0,,(U) (0" A w")(E,Q) =0, (u)(8*C" —EC¥)

The real functions o, (u) are defined on the parameters’ space B.

For any geometric surface, the previous relation is simplified as follows:

0, (£,0) = Mu) (@' A @?)(&,C) = Nu)(§'¢* ~§7¢"), Au) = 0, (1) - 0,,(u)

o, = Au) (a)l A a)z)

Under the parameter-transformation u” =u”(d) the analytic expression of the 2-form o,

transforms as follows:

0, = Au) (@' A @?) = Au )[ ~K6~ACZ)K/\(Z)AJ=A(U)[—L~;—~2——~2—~ @' A

—A(u)det{a }w NS —A(U)w AN@* =0,

Xa) = A(u)det[gup} (10.6a)
From 10.6a and 10.4b we imply that:
det g(q)
@) = ()d o)
A@) —/C) (10.6b)

Jdetg(da) Jdetg(u)
The 2-form o, is invariant under the parameter-transformation u” =u*(d) if only the
following condition is true:
A@) = A(@)
Au)
Jdet g(u)

of the choice of the parameters. As usually (see paragraph 6), we choose the value of the
constant equal to 1, and we result that:

Au) = Jdetg(u)

In that case according to 10.6b, the quotient is a constant number, independent

Jdetg(u) (o' Aw?) = Jdet g() (@' A @) (10.7)
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11.

The 2-form auleg(u)(wlx\a)z) is invariant under any parameter transformation and

defines the area-form on S.
The area of an elementary parallelogram with vertex at the point P, =2 u :(ul,uz) and sides

the infinitesimal vectors A U, A,U eT,S (relations 10.1) is calculated by the expression:

0, (4, 4,U) = Jdet g(u) (@' A w?) (AU, A,U) (10.8)

Connections on a geometric surface

Consider any vector field on a geometric surface S determined on a certain curve A of S.
How could one perform a quantitative calculation of the variation of the field along A? For
the case of the Euclidean plane E, the answer to this question is known from the elementary
geometry: to determine the variation of a vector field F along a plane curve A from its point
P to another Q, you only have to do two things:

a) Transport parallel to itself the vector F(P) along A, to the position Q. For the Euclidean
plane E, the parallel transported vector along any curve A is identical to itself; i.e. if we
describe the process of the parallel transport by means of a vector-map among the tangent
spaces of E, this map is the identity map; by using a symbolic language: name TP, the
parallel-transport-map along the curve A:

PT, :TPE%TQE

For any curve A joining P and Q, it holds:

PT, (F(P)) = F(P)

b) The second thing we have to do is to calculate the difference:

F(Q) - PT,(F(P)) = F(Q) - F(P)

The previous steps are legitimate because of the identical geometric structure of all the
tangent spaces of a Euclidean space. But this is not the case for the geometric surfaces and
generally for a Riemannian space. The concept of the "parallel transport" has to be re-
defined; this is achieved by introducing the concept of a "connection" on the geometric
surface S. By defining a connection on S we are able to establish an isomorphism between
any two tangent spaces of the surface joined by some curve A. The isomorphisms induced
by the connection along any curve A of S generate vector fields that determine the "parallel
transport on S".

In the present paragraph, we define the connection on a geometric surface S and the
parallel transport of a vector along any curve on S. We derive the infinitesimal variation of a
vector field along a curve and we introduce the consequent concept of the covariant
differentiation. Next, we examine how the connection transforms under a parameter-
transformation. Finally, we focus on connections that are "compatible" with the metric
tensor defined on the tangent spaces of the geometric surface and we proceed to the
calculation of their main features.

Consider a geometric surface S. We presume that the set B c R* of the parameters
u=(uy,u;) which determine the points P, of S is a simply connected set: for any two points u
and u’ in B, we can find a curve a:u" =a" (t), t eI c R of B, connecting the points v and

7

u’.
For every point a(t) of the curve a there is a unique tangent space T,,S of the surface S.

We define a linear map ¢° between the tangent spaces TS along the curve a:
Ta(ro)s 3 f(to) “ ’f(t) € Ta(t)s
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We say that the linear maps ¢° define a connection ¢ on S if they have the following

properties:

a) For any u, u' in B and a curve a of B passing by u and u’ (say: u=a(t), u'=a(t')),
connection ¢ establishes an isomorphism ' (3} () petween the tangent spaces T,»S, Ta)S
of S. We symbolize:

@i TonS = ToyS

b) For any curve a, the linear map @7, is the identity map:

@7, (&) = &), EWt) e T, ,)S

c) For any three points u=a(t), u'=a(t'), u''=a(t") of the curve a, connection ¢ satisfies the
identity:

ng‘,t = QDf',t" © (pta”,t

@7 () = @F o (@1, (§(1))), E8) € T)S

Remark: The matrix-elements of a connection.
Let @7, :T,,S —>T,,S be the isomorphism determined by the connection ¢ between the
tangent spaces TS, TxrS. The matrix [q)"5 (t',t)] of the linear map 7., is defined by the
relationship:

@7, (e, (u)=e, (u)@% (t't) (11.1)
By using the properties a, b and c satisfied by any connection, we are able to verify the
following properties of the matrix [@% (t',t)] of the connection:
A) @7 (tt) =0}

B) qDE};VJ (t',t) _ gDa;KJ (tl,t”) (pac (t”,t)

Parallel transport of a vector on a surface along a certain curve
Infinitesimal parallel displacement of a vector on a surface

Consider the curve a:u” =a“(t) in the parameters’ space B of the geometric surface S. Let
¢ be a connection on S defined according to the previous section of the present paragraph.
Let y, = (al(O),az(O)) be an arbitrary point of a, for an appropriate choice of the parameter t.
The connection ¢ determines the isomorphism (pf',0 between the tangent spaces TS,
To»S for any value of t. Hence any vector £(0) T,S is mapped by wﬁo to the vector:
So(f) € TS

£ () = 2, (£(0)) (11.2a)

£(0) = £(0) (11.2b)
We say that for any value of t the vector & (t) = ¢7,(§(0))eT,,S is a parallel transport

a(t)
of the vector £(0) ) with respect to the connection ¢ along the curve a.

According to 11.2a, we notice that ¢7; determines a vector field on S along the curve a of
the parameters' space. Is it possible to determine the vector field &, (t) along the curve a,

as the solution of a differential equation of the first order with initial condition given by
11.2b7?
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Let us study the behavior of the linear map ¢, between the tangent spaces T,S, T,S when
u, u' are infinitesimal close to each-other:

u=alt"),u=alt), t =t+At, At -0

By keeping terms up to the first order with respect to At we obtain the subsequent
equations:

u=a(t+At)y=a(t)+a(t)At =u+ Au

Au = a(t)At = (&' (t), & (t)) At

E':(@)(t + At) = (pfié\f/f (E(w)(t)) ’ E(<P) (t) = eu (u)f(w)p (t) € TuS’ E':(w) (t + At) € TU+AuS

eu (U + AU) E((p)u (t + At) = (pta+At,t (ev (U)) E((P)V (t)
Then, by using 11.1 we are getting:
e, (Uu+Au)é,)’ (t+At)=e,(u+Au)@% (t + At, t)&,)" (t)

&o) (t+At) =@ (t+At,t)€(q))V (t) (11.3)
We expand the quantities with argument t + At in Taylor series and keep terms up to the
first order. Then, by using the properties of the matrices [goaﬁ (t',t)} referred in the previous

section, we obtain the equation:

df%z(t) =k (at))a (t)g,, (t) (11.4)

We symbolize:
G (v, u) = @3 (alt), alt) = 9% (£,t)

oQet (U u
()5 E )

The symbols % (u) are known as “Christoffel symbols” " .
The vector field E((P) is the solution of 11.4, with initial condition determined in 11.2b.

Obviously, one could solve equation 11.4 only if the analytic expressions of the Christoffel
symbols "

#(u) and of the curve a are known.
Remarks:
A) The differential equation 11.4 can also be written as follows:

d€. (t ou ,
Lo O _ o g, (1 (11.5)

e ()

Yag (t) def dt’

t'=t
B) The solution of 11.4 or 5 is a vector field on S defined along the curve a of the
parameters' space; the members of the vector field are parallel to the initial vector
&) e ) and are determined by the relationships 11.2a and b:

E(q;)(t) = (pf,o (E(O))
According to the properties of the connection, for any two vectors of the field, it holds that:
it = @ (£0)(D))

We infer that all the vectors of the field are parallel to each-other; by using the properties of
the connection we verify that the relation of "parallelism" is an equivalence relation: a)
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any member is parallel to itself; b) if the member U is parallel to W, then W is parallel to U;
c) if U is parallel to W and W to V, then U is parallel to V:

Steps to the proof

a) &) =@, (E(q,)(t))

b) &) (t") = @, (§y () = &y () = @2 (§y ()

C) &gy (£) = Pl (£ () AND £ (£") = @L o (£ (£))

Then:

£ ®) = 0L (En(t) = Pl (B0 (S ™)) = DL (En(E™)

The vector field that is parallel to some vector along a curve a, is sometimes called "a
vector field parallel to itself" or "parallel vector field along the curve a".

Example 11A
Examples of connections in the Euclidean plane - Application of the equation 11.5

In the first section of the present example we are getting some information and formalism
related with the plane curves. Then, in the second and third sections we define two different
connections in the Euclidean plane. They are briefly described as follows:

A) According to the first connection the isomorphism between any two tangent spaces at the
points A and B connected by a curve a, is determined so that any tangent vector U, at A is
mapped to Ug at B, where Usp is the rotation of U, at an angle equal to the angle formed by
the tangents of the curve a at A and B (figure 11.1). One well-known result issued by this
connection is the Frenet - Serret formulas for the plane curves.

B) The second connection is the used in the elementary geometry of the Euclidean plane:
The parallel displacement along any curve is defined so that the Cartesian coordinates of
every tangent vector and its image are identical.

1) About curves in the Euclidean plane

Consider the Euclidean plane R; and any curve a:u” =a”(s) in it. Let u', u® be the
Cartesian coordinates of the points u = (ul,uz) e Rg and {e;,e,} the corresponding “natural”
basis of the plane. The parameter s is the length of the curve from an arbitrary point a(O)
on it:

s={(a(0)-a(0))"* do (E11A.1)

ot—n

We symbolize:

a(0) =(a'(0),& (0)) = [M,@]

aef|  do do
The plane R;? is equipped with the Euclidean inner product; hence:
3(0)4(0)=0,4" (0)&" (o)
From E11A.1 we imply that
a(s)-a(s)=1 (E11A.2)
The vector é(s) is tangent to the curve at its point u =a(s) and belongs to the tangent

space T R of the plane.
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Given that our plane is Euclidean, every tangent space T, R? is also Euclidean and in the
system of the Cartesian coordinates u!, u? its basis-vectors are the constant, independent of
u vectors e;, e,. The inner product at every tangent space T, R. is determined by the
Euclidean metric tensor:

6,=e€,€ Hv=12

Notice that for any two different points u=a(s) and u'=a(s’) of the curve, the corresponding
tangent vectors are written as linear combinations of the natural basis-vectors:
a(s)=e,a"(s)

a(s’)=e,a" (s

We see that in that case it is legitimate to transport each vector belonging to any tangent

space of the Euclidean plane parallel to itself without changing it, to any other point of the
plane (figure 11.1).

t(s)=da(s)/ds

a(s)

a(0)

Figure 11.1: Parallel displacement in the Euclidean plane.

At every point u=a(s) of the curve we are possible to define a unit vector n,(s)e T,R; which
is normal to the tangent vector a(s) i.e.:

n,(s)=(&(s),-&"(s)) = &’ (s)-e,a'(s) (E11A.3)
From E11A.3 we are getting the identities:
n,(s)-n,(s)=1,n,(s)-a(s)=0
We define the radius of curvature r(s) and the curvature K(s) of the curve a at s by the
relationships:

) - 1 i A6
K( )de@dnglsTO As

The infinitesimal quantity As is the length of the part of the curve between its neighboring
points:

u=a(s),u=a(s+A4s)=u+a(s)4s, As -0

The angle A6 is determined by the vectors (figure 11.2):

t(s)=a(s), t(s)=a(s'), s'=s+4s

2) Definition of a connection in the Euclidean plane
Consider again the curve a:u* =a" (s) of the Euclidean plane and any vector:
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£(0) < Ta(o)Rg

We are going to define a connection ¢ in R; by establishing an isomorphism among the
tangent spaces of the Euclidean plane, along the curve:

(G Ta(s)Rg - Ta(s')Rg

Let us consider two neighboring points of the curve a:

u=a(s), u+Au=a(s+4s), 4s >0

The vector &, (s) = @Z,(&(0)) e T,R; is mapped by ¢, ,, . to the vector:

E(QJ) (S + AS) = (psa+As,s (‘S (S)) g Tu+AuR§

8(s')-8(s)

t(s) w(S)
7 a(s")

t(s)=da(s)/ds ne t

t(s) t(s")

¢ a(s+0s)

a(s)

n(s+As)
k(s)=lim (AB/As)
As — 0

a(0) T r(s)=1/x(s)

= K(s+As)

Figure 11.2: Tangent and normal vectors at the points of a plane curve. Curvature and radius of
curvature at the points of a plane curve. The angle 6 is determined as the angle formed between

the tangent vectors t(s) and t(0). The parameter s is the length of the curve measured by a
specified point a(0) of the curve.

We presume that for any curve a, ¢Z ,. . is an infinitesimal rotation in the Euclidean plane,

with angle of revolution:
A6 = k(s)As

Where: k(s) is the curvature of a at its point u = a(s)

This implies that ¢?

s+A4s,s

can be written in the form:

@2, =Id+k(s)4s-Q (E11A.4)
We symbolize Id the identity map; the linear map 2 is to be determined by our assumption
that &, (s +4s) and &, (s) have equal lengths: the following identities are valid:

§ioy (S +45) &4y (S +45) = §4 (S) - §py ()
(f((,,) (s)+46- Q(f(q:) (5))) : (5((,,) (s)+486- Q(f((p) (5))) =& () &) (5)
£ (5) R(Ep) (5)) + (&0 (5)) &y (5) = O
Eo (S)- (Q(E«m (5)) + ' (5(@ (5))) =0 (E11A.5)
The linear map 27 is the transpose of Q2 defined by the relationship:
§-Q(8)=2"()-&, && TR
Equation E11A.5 holds for any vector: &, (s)=®Z,(&(0)) e T,R;
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We infer that:
Q (&4 (5)) + 2" (& (s)) =0 (E11A.6)
The matrix [Qﬂ of Q is defined by the relationship:
afe,)-e, 2
From E11A.6, we imply that the matrix-elements of [ 2, | satisfy the equations:
Q@+ =0

A non-trivial solution of the previous equations is expressed by the following choice:

21-(% 3

Hence, the matrix-elements of ¢@? are obtained from E10A.4:

s+4s,s
@ (s +4s,5) =0 +K(s)As (E11A.7)
From 11.3 and E11A.7 we derive the consecutive equations:
Eioy (5 +45) = @2, 4. (§(5))
8l (5+45) = @7 (s + A5, 5) &, (3)
Elor (5 + As) =&, (s) + Kk (5) As Q7 &, (S)
dss (5)
ds
With initial condition: &/ (0) =&*(0)
A comparison of E11A.8 with equation 11.5 implies that in our case the values of the
symbols y? (s) are given by the relationships:
vy (s) = K(s)
Let us try to solve the differential equations E11A.8:
We apply the definition of the curvature K(s) according to the preceding section of the

—k(s)2 &, (s) (E11A.8)

present example:

K(S)z% (E11A.9a)

We choose the parameters s and 6 so that for the initial point s=0 the value of 8 is zero
(figure 11.2): 6(0)=0
Then, by E11A.9a we imply that:

8(s) = [ (0)do (E11A.9b)

We define: &,(6) = &, (s(8))

def
Equation E11A.8 leads to the following matrix differential equation

dfq, C] =
%() - _Qé'(w) (9) (E11A.10)

0| o)

The solution of E11A.10 with initial condition &, (0) =& (0) is obtained by expanding E(q,)(e)

in a Taylor series; we obtain:
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2! sin@ cosB

3 ( ) cos(B'-60) sin(@'-0))\( cosf@ sinB —(0)_ cos(B8'-60) sin(B'-06) 3 ( )
() —sin(@'-6) cos(6'-6) )\ -sin@ cosBO | =sin(6'-6) cos(6'-6))’®
Hence the matrix of the connection ¢ is explicitly given by the relationship:

cos@K(a)daj sin(s K(U)daj
K(U)dGJ

& () = (I+QQ+9 ]5() [Cose sme]é(o) (E11A.11)

(E11A.12)

If we reflect on figure 11.2, we notice that the tangent vectors a(s) and a(s') of the curve

a have both unit length and they form an angle:
46 =6(s")-6(s)=[Kk(0)do

S

Hence é(s) and é(s') are related via a rotation operator whose matrix is identical to the

matrix [(p""’v' (s',s)} of the connection.

We choose:
&o(0) = 3(5)|5:0 € T,oRs
Then:

Ei () = @2, (a(0)) = a(s) € T, RS
Hence, the coordinates of a(s) are solutions of the equations E11A.8:

da'(s) - da’ (s ¥
— = K(s)&*(s), d—s() =—K(s)a'(s)

By using the definition of the unit (principal) normal n(s) of the curve at s, the above
equations take the form:

d‘:;(ss) = k(s)n(s) (E11A.13a)
d
%:—K(S)é(s) (E11A.13b)

Equations E11A.13a and b are known as “the Frenet - Serret formulas” for the case of any
curve lying on the Euclidean plane.

3) Parallel displacement of a vector in the Euclidean plane

Another connection that we could define on the Euclidean plane is the rather trivial one: the
identity map. We have seen that in Cartesian coordinates the basis-elements of the tangent
spaces of the Euclidean plane are independent of their position u. For the tangent space

T,R? the basis-elements are determined as the tangents of the following curves, at t=0:
by (t) = (u1 +t, uz), by (t) = (ul,u2 4+ t)

b(l)(O) = by(0) = (u', )

€ = dt by =(1,0), & dt be) =(0,1)

In Cartesian coordinates, the metric tensor in every tangent plane T R? of the Euclidean

plane is determined by the relations:
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9., =€ €= 6W

The basis vectors and the metric tensor are independent of u. So, we presume that the
matrix of the connection ¢ for any curve a of the plane is the identity matrix:

o (t,t) =0,

The defined connection ¢ establishes an isomorphism between any couple of tangent
spaces of the Euclidean plane, connected with a curve a:

ToRs = T.oRs

Any vector & e T, ,,R; is mapped to the vector: & (t) =@’ (&) e T,,Rs

The vectors & and Ew) (t) have equal coordinates with respect to the "natural" basis {e;,e,}
and, consequently the same length. We say that the vector field &, (t) is the parallel

displacement of & along the curve a. This is the concept of the parallel transport used in
the elementary plane Geometry.

Covariant differentiation on a geometric surface
Consider a vector field f(u) defined on the tangent spaces of the geometric surface S. Is it

possible to evaluate the infinitesimal variation of &(u) when we move from the point P, to
the point P, ,,, Au — (0,0) of S? The difficulty is focused on the fact that the vectors & (u)
and & (u+ Au) belong to different vector spaces:

E(u)eT,S, E(u+Au)eT, S

How shall we compare & (u) with & (u+ Au) in order to define their variation?

Thanks to the concept of the connection, we can “transfer” one of the vectors, say
& (u+ Au) to the neighboring space T,S and define the variation D,,& (u) of the vector field

along Au by the relationship:

D (U) = Puyru (& (u+ Au)) =& (u) = €, (1) D58 (u) (11.6)
The vector D, &(u)eT,S is called “the covariant differential” of the vector field & (u)
along the infinitesimal tangent vector Au=é(t)At, At -0 of some curve a:u” =a" (t)

defined in the parameters’ space B.

DE (t _
The “covariant derivative” % of the vector field E(t);f.f(a(t)) along the curve a, is

evaluated by the equation:

DE(t) D,E(a(t)) i Bupoens (€ (u+a(t) AL)) - & (u)
de dt T A0 At

(11.7)

Let us calculate the coordinates Dj,& (u) of the covariant differential D,,& (u) related to the
basis vectors e, (u), u =1,2 of the tangent space. By using relation 11.6 and the properties

of the connections, and by keeping terms up to the first order with respect to Au* we
obtain:

e, (u)Dsk(u)=e, (u)(qb",’ (u,u+ Au)&E¥ (u + Au) - E* (u))
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B | =u opt (u,u')
D4.& (u) = {cpv (u,u) +—au'k |

DZUE(U)Z[&?U( ) ot ( )| gv(u)}AuK

oux ou 'k

u'=u

We define the Christoffel symbols:

(11.8)

The components of the covariant differential and the covariant derivative of the vector field
f(u) along the curve a, are expressed respectively by the consequent relationships:

06 0)- [ e ) o
D’;E t dE” t =, , da“ (t
<;t( ) _ dt( )+rvK(“(f))5 (t) dt( ) (11.9b)

Remarks:
A) We notice that the covariant derivative of the vector field E(u) is determined by the
Christoffel symbols I% (u) which have been defined by 11.8. However, we have also defined
(relation 11.4) the quantities:
opt (u',u)
u _ v
I_VK (U)d;f au|k

The quantities * (u

VK

( ) are also considered as “Christoffel symbols”. There is a close relation

between % (u) I'“( ) which is derived as follows:

VK I " vk

From the definition-properties of a connection, we imply that:

Py (%Au,u (& (U))) =& (u) (11.10)
E(u)=e,(W)E" (u)<T,5

Consequently, from 11.10 we imply the relationships:
P (Purawu (€, (1)) ¥ (u ) e, (u)&" (u)

o (Puran (&, (1)) = €

Byonu (€ (U + A1) P (u + Au, u)) =e,(u)

B (eK (u+ Au))(/_),f (u+Au,u)=e,(u)

e, (u)@; (u,u+ Au)Ps (u+ Au,u) =0, e, (u)

@y (u,u+ Au) @y (u+ Au,u) =95

We expand in Taylor series and keep terms up to the first order with respect to the
infinitesimal quantities:
A v
Au J= o,

[6{ + o (uu) Au"]{@f + o, (u'u)

GU 1A aul)\

u'=

op, (u',u)| . op;, (u,u')|
au 1A

u'=u
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Hence:
0@y (u'yu)| 0@y (uu)

=0
ou 1A ou 1A

u'=u u'=u

I-V

HA

(U)+r(u)=0 (11.11a)
B) We define the quantities:

I—Ku/\ (U) dzf gKv (U) ,—/)/A (U), ,—Ku/\ (U) ;f gKv (U)/::/\ (U)
The matrix g(u) = [gKH (u)] is the matrix of the metric tensor expressed in the u-parameters,

on the tangent space T,S and g(u) = [g” (u)] its inverse:
g~ (U) G (U) = 5;
Hence:
oy (u) =" (U) g (U)
T (u) =g (u) Ty (u)
From (10.11a) we imply that:
Feon (U)+ T (U) =0 (11.11b)

All these quantities are called “Christoffel symbols”.

How do the Christoffel symbols transform under a parameter transformation?
Consider an infinitesimal vector AU in the tangent space T,S of the geometric surface S:

AU=e,(u)Au” TS
The infinitesimal vector Au =(Au',Au®)=(&'(t),&'(t))At, At >0 is tangent of the curve
a:u=a(t) which is defined in the domain B ¢ R* of the u-parameters.

Let us apply a transformation u* = u” (0) in the parameters’ space B. As usually, we assume
that a parameter transformation is invertible, differentiable at least up to the second order,
and its invert transformation is also differentiable at least up to the second order. As we
have already noticed (paragraphs 5, 9, 10) the points P of the geometric surface do not
change under any parameters’ transformation:

P=P =P,

The same is true for the vectors of the tangent spaces 7,5 of S:

AU =e, (u)Au* =&, (0)Ad" = AU

We have seen (see paragraph 10) that under the transformation u” = u* (L?) the coordinates

Au* of the tangent vector AU and the basis vectors transform according to the relations:

ey A 5 v _.out - oa*
Aut = Jl(@)Ad”, AdY = J)(u)Au”, JI(d) bl JH(u) ey
€ U € U

&,(0) = e, (W), e,(u) =&,

For any vector field &(u)=e, (u)&" (u) e T,S we have:
e, (u)&" (u) =& (a)&" (@)

& (u)= ;& (a)

Let us consider the connection @ defined on the geometric surface S. We shall examine how

the matrix [(T)Z (u',u)], u'=u+Au, Au - 0 transforms under the transformation u* =u” (0)
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of the parameters' space. As a consequence, we shall derive a transformation rule for the
Christoffel symbols related with the connection @ of S.

According to the general properties of a connection, we have:
Pusu(§ (1)) = &5 (U +AU) €T, 4,5

e, (u+Au) @, (u+Au, u)f“ (u)=e,(u+ Au)%v (u+Au)

@) (u+Au,u)é¥ (u) =&, (u+ Au)

B (u+ Au,u) I (8)E (@) = 7% (a0 + AG)E, (& + AG)

By definition:
0¥ + A0* = 0" (u + Au) ~ & + J¥ (u) Au
] is

v

Given that the matrix | J; (u+ Au)] is the inverse of [ J; (0 +Ad)] we obtain:

I (u+ Au) @, (u+ Au,u) J¥ (0)E< (@) = €, (a + Ad)
a

In the system of parameters

a)
(G',0%) the matrix elements of ¢ satisfy the relation:

£ (G +A0) = @} (a+Ad,a)E* (a)

Hence, by combining the last two relationships, we imply that:

@} (T +Ad,d) = I} (u+ Au) @, (u + Au,u) J# (4)

We expand in Taylor series and keep terms up to the first order with respect to the
infinitesimal quantities:

5+ [ () AdP = [jj (u)+ %Auﬁj(ag + Iy, (u)Au®) 3¢ (@)

Iy (a)Je (u)Au® :(F;a(u)jj(u)J/j (@) + Navuo JY (U)JAUG

Finally, we obtain the identity:

Feo (@) = g (u) 3 (u) 2 (@) T (@) + — (U)J: (@)J2 (@) (11.12)

K

Remark: According to 11.12 the Christoffel symbols do not transform like a tensor field
(see paragraph 9: Transformation of the metric tensor). In addition, we notice that the
second term on the right-hand-side of 11.12 does not depend at all on the Christoffel
symbols. It is an expression of the specific parameter-transformation. We deduce that it is
possible the Christoffel symbols be identically zero in one system of parameters, but
different of zero in another. In a Euclidean plane, it is possible to choose the parameters so
that the corresponding Christoffel symbols are not all zero; for example in polar coordinates:
see Examples 11 A and B, in the present paragraph.

Connections which are symmetric and compatible with the metric tensor of the
geometric surface
In the example 11A, we saw that it is possible to define many different connections in a
geometric surface. From now on, we restrict our interest on connections that satisfy two
specific conditions:
a) They are “symmetric”.
b) They are “compatible” with the metric tensor of the geometric surface.
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Let us see what these restrictions mean and how they help us to evaluate the Christoffel
symbols corresponding to connections of this kind.

Remark: The Christoffel symbols carry significant information about the behavior and the
properties of a geometric surface: we have already seen that they determine the way a
vector field change along a curve of the geometric surface; we shall find out that they also
play a role of crucial importance for the determination of the curves with minimal length
joining two points of the plane and for the definition of the “curvature” of the geometric
surface.

Symmetric connections:
We say that a connection @ is “symmetric”, if for every u=(u',u’)eBc R the
corresponding Christoffel symbols satisfy the relationship:

re (u)y=r*,(u) (11.13)

Connections compatible with the metric tensor:
We say that @ is compatible with the metric tensor of the geometric surface S, if every

isomorphism @], :7,S - T,S is an isometry:
Consider any two vectors E, E eT,S then, if ¢ is compatible with the metric tensor of the

geometric surface S then, for any curve a of the parameters’ space joining v and u’, the
inner product of &, ¢ eT,S has the same value with the inner product of their images

under @, i.e

(& (u), T (w) = (@2, (E (), @2, (T (v))) (11.14)

If a connection @ satisfies the previous assumptions (a) and (b), we are able to calculate
the corresponding Christoffel symbols as functions of the matrix elements g, (u) and their
first order partial derivatives 0,g,,(u) of the metric tensor, as follows:

Let u'=u+Au,Au=(Au1,Au2)—>(O,0) be point of the parameters' space infinitesimally

close to u. We begin with (11.14) and obtain sequentially the relationships (in the
subsequent equations we expand the functions with argument v+ Au in Taylor series and
we keep terms up to the first order with respect to the infinitesimal quantities):

(8w, 8 (u) = (@, a0 (8 (4)): 500 (€ (W)
(e, (u),&, ()& (U)C" (1) = (L. s (& (1)) B s (&, ())) E¥ (1) ¥ (W)
g,, (u) = (e (u+4u),e,(u~+Au)p;(u+Au,u) @, (u+ Au,u)
g, (u) G (U+ Au) @y (u+ Au,u) @) (u + Au,u)
v = (G + 0,94 AU° ) (S5 + 5 Au%) () + I)AU")
If not written explicitly, the argument of the functions is u. The metric tensor is symmetric;
hence, we have
(9uilp + Gl +,G,, ) AUP =0
According to 11.11a relating the different forms of the Christoffel symbols, we result the
equationS'
g,m + QVK -0,9,, =0
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gp/\ + gKV apgyv = 0

ruvp + /_vup =0,9,, (11.15a)
By cyclic permutation of the indices, from (10.15a) we obtain the additional equations:

I-VPH + rpvu =0,9, (11.15b)

I_puv + I_upv 0,9,y (11.15c)

According to our assumption (a), the Christoffel symbols are symmetric; hence from
11.15.a-c we obtain that:

1
F +F +F =§(5p9vp+5pgpv+5v9pu) (11.15d)

uvp puv vop

Combining 11.15d with each one of the relations 11.15a-c, we deduce that the Christoffel
symbols are calculated by the relationship:

1
rpvp = E(_apgvp + apgpv + avgpp) (1116)

Parallel displacement and covariant differentiation of a vector field
We have already seen that a vector field of any geometric surface, generated by the parallel
transport of a vector along a curve of its parameters' space, is determined by the equation:

E(t) = (&o) (11.17)
In 11.17 ¢ is any connection defined on the geometric surface S.
In this section we are going to confirm that the covariant derivative of a vector field
&(t)=£&(a(t)) transported parallel to itself along the curve a, is zero:

DLE(t) d&*(t) -, , t)
SO EO R e (095 -0 (11182

&(t,) = &(a(0)) = &, (11.18b)

Or, in other words, we are going to verify that the vector field determined by 11.17 is a
solution of the differential equation 11.18a, with initial condition given by 11.18b.

We start from 11.17; for At - 0 we have:
E(t+At) =@, (E(t)) = O (@2 (£(55))) = e (6(2))
Symbolize: ¢ (§(t)) 7 @62 (£ (¢))

E(t+4t) = QT (§(6)) = Bty o) (8 () = PR sy 00 (& (£) E7 (8))
e, (a(t+at))&" (t+ At) = <P‘?3+At) (e, ()& (¢ )

e, (a(t+At))&" (t + At) = e, (a(t + At))@P* (a(t + At),a(t))E" (t)
As usually, we reject terms of order greater than one:

B (wa(t)  da ()

&V (t+At)=|0! + At &V (t), At -0

au’( u=a(t) dt
O rfae)e 02 - o) 0 (see t1.11a)
dg* (t) da" ()

at +x(a(t))& (t)T =0

Furthermore E(t) given by 11.17, satisfies the initial condition:
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é(tto) =2 (80) = 8-

Remarks:
1) Let ¢ be the connection defined on the geometric surface S. We presume that for some

system of parameters u=(u',u?) the corresponding Christoffel symbols are identically zero in
every tangent space of S. Then from 11.18 we deduce that the components of the vector

field &, (t) generated by the parallel transport of any vector &, GTU(O)S (including the

basis-vectors) along any curve a of the parameters’ space passing by u,, satisfy the
equations:
de (t) -0
dt
I.e. the coordinates of &, (t) are constant and equal to the initial ones:
S (t) =80

This is the well-known case of the Euclidean plane, where the Christoffel symbols of the
connection which is compatible with the Euclidean metric are identically zero (see 11.16).

2) Infinitesimal variation of the basis-vectors fields ¢, (u) e T,S with respect to the

connection ¢ defined on S
We calculate the covariant differentials of the basis-vector fields e, (u) € T,S with respect to

the connection @ defined on S:

Dy8,(U) = ®,,.0 (e, (U+Au))-e,(u) =€, (u)P, (u,u+Au)-e, (u)5, =

=e, (u)[c‘i; + w

Au* - 5;] =e, (u)r; (u)Au”

D,e,(u)=e, (u)r (u)Au* (11.19)

Au~y

3) Assume that the connection ¢ is symmetric and compatible with the metric tensor; this
implies that ¢ is an isometry (relation 11.14); hence, the norm of the parallel displaced

field & (a(t)) = {2 (E(O)) is constant:

d|[ (a(t))
dt

4) Infinitesimal change of a real function defined on a vector field of the geometric
surface S
We assume that the points of the geometric surface S are determined by the system of

parameters u=(u*,u®): R* > B>u = (ul,uz) <P eS
Consider a vector field E(u) on S. The range of the vector field is the set E(B) which is a

subset of the union of the tangent spaces of S:

£(B)cUTs

ueB

The norm of the vector field E(u) is an example of a continuous real function defined on the

subset the union of the tangent space of S:
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EW)| = J(EW),EW) = g, (e WE W)
Ur.s-= .E(B)@R

ueB

The calculation of the covariant differential of ‘E’(u)‘ is achieved by applying the properties

of the infinitesimal covariant variation of the field E(u) with respect to the connection

defined on the geometric surface. In general, assume a real differentiable function F with
domain the vector fields defined on S. The covariant differential of F at the point P, in S

along the infinitesimal change of parameters Au = (Aul,Auz) is defined by the relationship:

_ _ _ _ F(E) _
D, F (W) =[F(Ew)+ D EW)-F(Ew)] = G—(E)Dzuf(u) -

Au—0 o&*
F(E), - _ _
= aag(:’t) (0.8 + T &) Aur

(11.20)

We apply 11.20 for the matrix elements of the metric tensor and we check the results,
comparing them with the relationships obtained in the previous sections of the present
paragraph (see relations 11.15). We have:

D,,9,,() = D, (e,(u),e,(u)) = (e,(u) + Dye,(u),e,(u) + Dye, () - (e,u) e, ) ~

~ gy (U) Au* + g, () (u) Au = (/'WK + /:vpK)AUK

On the other hand it holds that:

DG (W) = (@, ., (€, (U + A)), @, 4.4, (€, (U + AW))) - (€, (1), €, (1))

But ¢ is an isometry; hence we obtain:

D,,9,,(U) = (e,(u+ Au), e, (u+ Au)) - (e,(u), e,(u)) = g,,(u+ Au) - g, (1) ~ 8,9, (L) AU
We combine the above relations and we result the well-known equation 11.15:

Fe T = 0.9,

HVK VUK

5) Verify the following identities: [We symbolize F any a real function defined on the vector
fields of S -& (u),{ (u) e TS, Ayu = (A", 4,0°) j=1,2,3...andA e R]

5A) D, .. Amua? (u) = DWE (u)+ D%UE (u)
5B) D,, (E(u) + E(u)) =D,,& (u)+ D, (u)

Example 11B
The Euclidean Plane in Polar Coordinates - Connection - Covariant Differentiation -
Parallel Transport

In this example, we describe the Euclidean plane in polar coordinates:
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a) We find the basis-elements at every tangent space as linear combinations of the natural
basis

b) We derive the explicit form of the metric tensor in polar coordinates

c) We calculate the Christoffel symbols in polar coordinates

d) We find the analytic expression of a parallel transported field along any curve of the
Euclidean plane, in polar coordinates

e) We confirm that the geometric features of the Euclidean plane, like the properties of a
parallel transported field are not affected by the coordinate transformation

Consider the Euclidean plane E and a Cartesian coordinates system x=(x!,x?) in it. In every
tangent space T E of E, the metric tensor g(x) is identical to the unit matrix:

(9.1=( 3]

The basis-vectors x, y =1,2 of every tangent space T E satisfy the relationships:
gIJV = <xplxv> = 5pv

The norm of any vector Ax = x,Ax" e T E is calculated by the formula:
|Ax]| = |Jg,,Ax*Ax" = \/(Axl )+ (ax?)

We apply a coordinate-transformation on E, from the Cartesian to polar coordinates:

x' = u' cos(u?)
(E11B.1)
x* =u'sin(u?)
The induced transformation on the tangent spaces of E is determined by the relations:
_ox*
ou’
According to E11B.1:

Ax*

Au”, Ax =x,Ax" e T E

Ax' = Au' cosu? — AuPut sinu? (E11B.2)
Ax® = Au' sinu® + Au*u' cosu?®
The basis-vectors e, (u) u =12 corresponding to the polar coordinate-system are
calculated by the relationships:
Ax = x,Ax" = e, (u) Au"
ox*
€ (U) =X, au

e, (u) = x, cosu?® + x, sinu?
o (E11B.3)
e, (u) = —x,u* sinu?® + x,u* cosu

From E11B.3, we obtain the form of the metric tensor in the u-parameters:
9, () = (e, (v) &, (u))
1 0
(3, (u)] = {0 (ul)z] (E11B.4)

Now, make an abstraction and imagine that the plane E as a geometric surface whose points
are determined by the couples:

U= (ul,uz)
U e(0,40) o e ) [2n(k ~1),2nK) k < Z
Koo
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At every tangent space T,E of E, the metric tensor with respect to the basis {ei(u),ez(u)},

is given by E11B.4. The norm of any vector AU =e,(u)Au’ eTE is calculated by the
relationship:

AU = ((Aul)2 +(utY (Aul)z)

1/2

What about the connection @ in E which is compatible with the metric tensor E11B.4?

To determine the connection, it is enough to calculate the corresponding Christoffel symbols,
according to 11.16. After some tedious calculations we find that:

I_111 = /=112 = I:121 = ,=211 = /:222 =0
M, = -u' (E11B.5)
,=212 = /=221 =u

« (u)
T () = @7 (U) Ty ()
The matrix g(u) = [

1 0
(g (u)]=|o 2

We obtain:
==, =R =F=0
r, =-u (E11B.5)

o, 1
I_122:I_221:F

Let us now examine how a vector &, < TU(O)E is transported parallel to itself along a curve

a:u’ =a”(t) of the parameters’ space, in the u-parameter-system.

We apply equation 11.18 and we obtain the system of differential equations:
d&t

= -a'&&* =0 (E11B.6a)
2 o7 21l
ddit+%sl+%52 -0 (E11B.6b)

We change the parameterization of the curve, so that:
t=a*,a :al(az)

Equations E11B.6a and b take the subsequent forms:
d&t

E—alfz =0
alg—§+g—ifz+fl =0
Z—gi—alfz =0
%(alfz)wl =0

By setting:
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=8 =a8 (E11B.7)

def
The system of the differential equations is transformed as follows:

1
@
da’
(E11B.8)
¢z
@ + ( =0

The system of equations E11B.7 and 8 is solvable for any curve a of the plane E, under the
constrain a' (az) # 0 and the initial conditions:

& (3(0)2) =80 1 &° (a(O)z) =80y 1 Ao =8 (a<0)2)
We find that:
&' = Asin(a® +6)
cos(a’ +6) (E11B.9)
a'(a’)

The constants A and 6 are determined by the initial conditions:

é- 1

_ 2 -1 (0)

O=-ap +tan"| 5 r =
(0) (0)

A= \/ (‘:"(0)1 Eoy )2 + (f(ml )2

2

Remarks:
A) Given that the connection is symmetric and compatible with the metric of the plane, we
expect that the norm of the parallel displaced field &(&”) is a constant along the curve a.

Let’s check it (see E11B.4):

d 5(82)2 d v d 172 232
%:ﬁ(gwfﬂf ):E(gn(f) +gzz(‘s ) ):
2 2(32 410
:i%@””“gﬂgﬂ=i%Aﬁ¥@ﬂ®+w)mf%%;l::
a
d 2
== (#4)=0

This is obvious and from the equations E11B.6 or 7; it is easily implied that:

2 (€ + (@ -£27) =0

d 2

—I&@)" =0

dtlf( )

B) Under the parameter transformation E11B.1, the Euclidean “nature” of the plane E is not
affected. That implies that the Cartesian coordinates of the parallel transported field §(a2)
along any curve a should be the same for any value of a?; let’s check it:

§=e&" =(x,c088 + x,sina’)&" +(-x,a' sina® + x,a' cosa® )& =

= x,(§' cosa’ - &’a'sina’ ) + x, (&' sina® + &’a’ cos a®) =

= x,A(sin(a’+B) cosa’ - cos(a’+ B)sina’ ) + x,A(sin(a’+ ) sina’ + cos(a’+ 0) cos &” ) =

= X,Asin6 + x,Acosf
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12.

C) Let us consider a closed curve a of E. Say that a'(2r7) = a'(0) (see relations E11B.1). We

pick a vector &, eT,,E and we transport it along a, until we return at the initial tangent

()
space: T,,,E =T,,E

a(o)

Name ¢, the image of &, at the end of its trip:

6(1) = QDS-I),O (6(0)) = Ta(zn)E
We anticipate that for the Euclidean plane the initial vector &, and its image ¢, are
identical: &, = &,

We are going to check that this is true. [We notice that as we shall see in the next
paragraphs, this is not the general case for a geometric surface]

We have:
fl(az):Asin(aere)

cos(a* + 0
§2<a2):A ag(az) )
Hence:

d&'(a’) = Acos(a” +6)da’
a’=2n a’=2n

E' &0 = [ d&'(8?)= [ Acos(a®+6)da® =0
a’=0 a’=0

We conclude that:
6(1)1 = 5(0)1

Similarly, for the other coordinate we have:

a=2n a=2n sin(a* +08) &'cos(a*+0
6(1)2 - 6(0)2 = az‘l;o d&? (az) =A azj;o da’| - (a1 ) - (a(l )2 ) =
2 S 2o -1 2 2-2n -1 2
_ Acos(al +6) L IZ o K cos(a2 +9) . J.Z o a cos(a2 +9) o
a = a’=0 (al) a*=0 (al)
We imply that:
E(nz - 5(0)2

Curvature of a geometric surface
In the example 11B of the preceding paragraph, we proved that when a vector &, T, E

a(o)
of the Euclidean plane, is transferred parallel to itself along a closed curve a to its initial
position, it remains unaltered, either using Euclidean or polar coordinates. In this paragraph
we deduce that this is not the case for every geometric surface. We shall see that the
variation of a vector field transferred parallel to itself along an infinitesimal loop on the
geometric surface, depends on a quantity called "curvature" that is independent of the
system of the parameters. The curvature is determined by the connection defined on the
surface. Because of its invariance under any parameter-transformation, the curvature is a
geometric characteristic of the surface. If the curvature of a surface is zero everywhere, the
surface has the structure of a Euclidean plane.

Consider a geometric surface S equipped with the metric tensor g(u) in the u-parameter-
system. Let ¢ be a symmetric connection on S, compatible with the metric tensor.
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According to paragraph 11, the Christoffel symbols which determine ¢ are to be calculated
by using relations 11.16.

U‘tA(z)u R U+A(2)U'tA(1)U
tin [-1,0] Puraryu tin [-1,0]

U+A(1)U +A(2)U

!

A PU+A{1)U+Q(2)U

I.r' U+A(1)U+tA(2)U

/ tin [0,1]
=D L > UHAU <= Pyin
4
BBt Bat) A

Dyu=(Byu’,A)u?)
Figure 12.1: An infinitesimal parallelogram An [A ,u,A,u] in the u-plane of the parameters is

illustrated. 1Its vertexes u,u+A(1)

of its image Afl [A

u, u+A(1)u+A

U, U+A,u  correspond to the points

P, P P

U+ I u+Aqyu+ Dy ! Pu+A(2)u U' A(Z)U] onsS.

(1)
The boundary of the infinitesimal parallelogram AnU[A(l)u,A(z)u] is symbolized by 0An, and has

the analytic expression u;=a(t); each branch of the curve a is displayed on the figure.

Let c:u” =c”(t) be a closed curve of the domain B c R* of the parameters. The region

R c B:c=0R enclosed by the closed curve c is possible to be approximated by an infinite

number of infinitesimal parallelograms (figure 4.2). The analytic expression of c is possible
to be expressed as the summation of the analytic expressions of the boundaries of all these
infinitesimal parallelograms. Hence, in order to cope with the main question of this
paragraph, it is enough to study the parallel transport of a vector §, T7,S along the

boundary of an infinitesimal parallelogram of the u-plane of the parameters (figure 12.1).
Let a:us=a(t) be the analytic expression of the boundary 0An, of the infinitesimal

parallelogram, with respect to a parameter t.
Pick any vector &, €T,S, u=u, = a(0) and define the vector field:

&(t) = & (a(t) = 2. (&)
The vector field &(t) is the parallel transport of &, €T,S along the closed curve a; the
covariant derivative of &(t) is zero (relation 11.9b):
Di, & = d&¥ + T} (a(t))& da“ =0
d&+ = -+ (a)&” da (12.1)
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We integrate 12.1 along the closed curve a; we begin from the vertex u, we move along the
boundary of the infinitesimal parallelogram and return at the initial vertex u. Let us name
&) the final vector of the field, when we have returned to the initial tangent space:

5(1) el,S

We write:

Sy = €, ()6 €T,

é-(1) = eu(u)f(l)y eTl,S
Proceeding with the integration of 12.1, we find that:
§) —&of = - Th(a)&" da" (12.2)

oAn,
We carry out the integration on the right hand of 12.2, by taking into account 12.1 and
keeping terms up to the second order with respect to the infinitesimal quantities

A(l)u“, A(Z)u“ (figure 12.1). We result the following equation, where the argument of every

function is considered at u.

Sy 60 = Rxdwo) (A(nuAA(z)UK - A(1)UKA(2)UA) (12.3)
The quantities R!, are defined by the relationships:
R\I/J/\K d:f /:pil:v‘}’\ - a)\l:v,; (124)

From 12.3 it is clear that under any parameter transformation u” =u”(d) RY, transforms

like a tensor; we name R*

VAK

“the curvature tensor” of the geometric surface at its point

determined by u.
Given that k,A=1,2 12.3 is equivalently written:

S’ —80 = (RLle - &IJH)E@V (A<1>“1A<2>“2 - Au)”zA(z)“l) (12.5)
With the help of figure 12.1, we can see that A,u = (4", Ayu?), Ayu = (AU, Ayu?) are
tangents of the straight lines a(t)=u+tA,u, a(t)=u+tA,u,t<[0,1] at their common

point u. These curves lie in the parameters’ domain B and pass from the point u, for t=0.
Hence, we infer that (see paragraph 10):

A) The vectors AU =e, (u)A,u”, AU =e, (u)A,u* belong to the tangent space T,S of S.
B) Relations 12.3 and 12.5 are written in the language of the forms:
§w’ — 80 = Ry @' A" (Au)U' 4,U) (12.6a)
oy — &0 = (Ry — Ry ) Egy @' A @? (AU, 4,U) (12.6b)
C) The area of the infinitesimal region Afl, = Al ,[A,U, A,U] on S is given by the equation:

area(Af,) = Jdetg(u) (" A ) (AU, AU) = Jdet g (u) Ay, A - AyPAqut)  (12.6¢)

From 12.6a-c we obtain the following expressions:
1

Euy)' — &) = ———=—==&,’ R area(Ar,) (12.7a)
detg(u)
Réj def ,le _R521
1 v K
&' — &) = ——=&, 9"R,, area(4rl,) (12.7b)
detg(u)
RKV = KAR\;\
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We call [R (u)] "curvature matrix".

Properties of the curvature matrix
A) From the definition 12.4 and the relationship 12.7a we obtain the identity:
R\j = Rj\u - R321 = I:p/\ZI:vpl _I:p)\ll:vpz _allzv)\z +62I:VA1 (12.8a)
Assuming that the connection of the geometric surface S is symmetric and compatible with

the metric tensor, we derive the general form of the curvature matrix:
By taking into account the identities 11.15, we obtain the subsequent relationships:

RKV = gK)\Rj =G (I:p/\ZI_-vpl - I:pAll:vpz - 6ll:\/AZ + 6ZI_-\/)\I) = _61I:Kv2 + aZI:Kvl - I:\/AII:AKZ + I:VAZI_)\KI (128b)
RVK = _61/:\«2 + azl:vKl - ,:KAII:AVZ + I:KAZI:AVI (12.8c¢)
R,+R, =0 (12.8d)
R,=R,=0,R,+R,, =0 (12.8e)
From 12.8e we imply that the curvature matrix has the form:
-1
[RKV(u)] = R(u) 0 (12.9)
10
The real function R(u) is determined by the expression:
R(u) = _81/_212 + a2/_211 + r/uzré - r)\zzrﬁ (12.10)

B) Transformation of the curvature matrix under a parameter-transformation
Let v’ = u¥ () be a parameter-transformation. How does relation 12.7b transform?

We have seen (see paragraph 10) that under u* = u* (L?) the area-element of the geometric
surface S is an invariant 2-form:
area(Afl,) = area(A,)

We transform the other terms of 12.7b as we have already learnt and we obtain the
expressions:
1 ou” z zou” ou”

ou' [z a c a\ _ ~A\p
W(Eu) _5(0) )— mﬁf@ 30 o R, area(Ana)
detJ— L _det|Ou ou’|_ |detg
detJ ou*  oa? detg
out  ou?
1 ou” z pou” .

mﬁ £ ﬁg”ﬂRKv area(Aﬂg)djfﬁg(o)BgaﬁRpﬁ area(4n,)
The matrix-elements of the curvature matrix transform according to the relationship:
B 1 ou* ou”
P detJod” odf
By combining 12.9 with 12.13 we obtain the following expression for the transformed
curvature matrix:

f(l)a - 5(0)0 =

(12.13)

5 1. detg(a)(0 -1} 5,..(0 -1
[Rpﬁ]—R(u)—detg(u)(l odefR(u)[l 0] (12.14a)
From 12.14a we imply that:
Rlw) _ _R(@) (12.14b)

detg(u)  detg(a) %
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The quantity K is independent of the choice of the system of the parameters; it depends
only on the point P « (u',u*) <> (d",0°) of the geometric surface, we have considered. The

real function K(P) is a geometric invariant of the geometric surface S; it is called “the
curvature of the geometric surface at its point P”.

According to 12.10, the curvature of a geometric surface at any point P € S is calculated by
the relation:

R 1
~detg detg

(_51/:212 + a2/:211 + I:Alzl:lg - r)\zzlzﬁ) (12.15)

K(P)

Example 12.A
Calculation of the curvature of a sphere

In this example we consider a geometric surface determined by a metric tensor arisen by
the description of a sphere embedded in a 3-dimensional Euclidean space. The connection
on this abstract sphere is defined to be symmetric and compatible with the metric tensor;
we calculate the Christoffel symbols corresponding to this connection and then we derive the
curvature at each point of the sphere by applying the general relation 12.15. It is confirmed
the anticipated result, well-known by the elementary geometry of the 3-dimensional
Euclidean space.

The surface of a sphere with radius b, embedded in the Euclidean space R; could be
considered as a geometric surface S determined by the following metric tensor:

b® - (u?)? 0
g=[9,]= 0 p? (12A.1a)
bZ _(UZ)Z

uU'eR, U’ e (—b,b)
Remember that a sphere is to be considered as a surface of revolution. According to the

general analytic expression of a surface of revolution, referred in Example 9A, for the case
of a sphere we have:

f(u*) = {b* - (U*)

In this description, two diametrically opposite points of the sphere have been excluded. The
analytic expression of a surface of revolution is periodic with respect to the parameter u®.
This periodicity for the geometric surface corresponding to a sphere is accomplished by
imposing the following conditions on the basis-elements of its tangent spaces:

eu(ul,uz):eu(u1+2n,u2),u:1,2 (12A.1b)
The basis {e,(u),e,(u)} is compatible to the metric tensor 12A.1a, i.e.:
(e,(w),e,(W)) = g,, () (12A.1¢)

The determinant of g is:

detg = b?
The inverse of the metric tensor is:
b2
_ 1 1l |
9" =[9.] =4;| b -y
0 bZ _ (u2)2
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13

The Christoffel symbols corresponding to the connection on S which is symmetric and

compatible with the metric tensor 12A.1, are calculated by applying relations 11.16:
= - b*u?

2 2

/:111=I: =I: /_221=0, /:112=/:121=—U,/_211=U,/_222=m (12A.2)
/_111:/_212:/_122:/_221:O I_112 /_1__ 2
=@ (12A.3)
i b2 2\2 2 u?
I_11_F( (U) )I I_22_b2 (uz)z
By applying 12.15, we obtain:
R(u
K(P) = () -2 (12A.4)
detg b

Relation 12A.4 holds for every point P of the sphere S; as expected, the curvature of S is
constant everywhere.

. Geodesic curves on a geometric surface

In this paragraph we define the concept of the geodesic curves on a geometric surface: the
tangent vectors of a geodesic curves are vector fields transported parallel to their-selves
along the curve. Then an extremely important property of the geodesic curves comes out:
locally, i.e. in an appropriate neighborhood of curves passing by two certain points of the
surface, the length of the geodesic curve joining them is extreme.

Let us consider a certain curve c(t) =(c'(t),c’(t)), t I (I an interval of R) lying in the

parameter-space of the geometric surface S. Every couple ¢(t) determines a point P, on S;
hence a curve C on S is determined, corresponding to c.

The set of the tangent vectors of C at its point P,y is the subspace of T.»S spanned by the
vectors:

e, (c()e* (DA, AR, () = c“(t)

The elementary length As of C is given by the norm of the infinitesimal tangent vector:

AC(t) =e, (c(t))c*(t)At, At -0

1/2

As = (AC(t), AC())" = (g, (c®))e* ) (b)) At (13.1)
As t runs I, any tangent vector & (t) =¢, (c(t))c"’(t) of C defines a vector field along C. The
variation of &_(t) along C is calculated by its covariant differential (relation 11.9b):

d*ct (t)

D &.(t)=e (c(t))( + e (t)c"(t)j (13.2)

We say that the curve C is a geodesic of the geometric surface S, if only any tangent vector
field £.(t) of C, is transferred parallel to itself along C.

By this definition we imply that C is a geodesic curve if and only if any tangent vector field
& (t) of C satisfies the condition:

D.&.(t)=0 (13.3a)
Hence, the curve c(t) = (cl(t),cz(t)) of the parameter-space corresponding to a geodesic of

the surface S, is a solution of the differential equations:
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d?c”(t)
at?
Equation 13.3b is a second order differential equation; any solution of 13.3b is uniquely
specified by two initial conditions. For example, there is just one geodesic of S passing by
the point P, and having a given tangent vector at this point:

(c'(0),c*(0)) = (v}, ) = u
(¢'(0),¢*(0)) = (v*,v?)

Where v!, v are given quantities.

+CEe (£)e(t) =0 (13.3b)

The curve of locally minimum length passing by two points of a geometric surface
is a geodesic

Consider two points Pu(l) , P, of the geometric surface S. Assume that there exists a unique

Y2

curve C of S passing by these points, such that the length of the segment of C between Pu(l)
and P, is a local minimum:

Let us symbolize:

C:PyeS,cict)=(c(t), () e B R

c(t) = u(l),c(tz) = Uy,

If we consider any other curve C passing by the points Pu(l), P

U2)

which is “near” C, the

length of the segment of C between Pu(l) and Pu(z) is larger than the length of the

corresponding segment of C.

We describe the curve C as follows:

C:Pyy S, Cic(t)=(c'(t),c())

The conditions of "nearness” and "passing by the two mentioned points" are satisfied by
writing:

ch(t) = c*(t) + en”(t)

Where € is a real number in an appropriate neighborhood of zero and n*(t), y=1,2 are
arbitrary real functions satisfying the conditions:

n*(t,)) =n"(t,) =0 (13.4)

We choose the parameter t to be the length of the segment of the curve C, from Pu(l) to any

point P between the points £, , R, ~of C.

Y
Pty Pty
t=|ds= [ g, (c)dc dc"
Pu(l) Pu(l)
Puay
Hence: dt =ds,t, =0,t,=s,= [ ds

P“(l)

We are going to show that the curve C is a geodesic of S, i.e. ¢ (s) are solutions of the
differential equations 13.3b.

Steps to the proof
As soon as we have chosen the length s of the curve C as the common parameter of the

curves C joining the two fixed points F{Jm , P ) of S, the following identities are true:

Y
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14.

ds® =g,,(c)dctdc’ (13.5a)

1=g, (c)ée*e” (13.5b)
., dc’
¢\ = —
def s

Consider any curve C which is near C and passes by the fixed points Pu(l) , P of S:

U2y
c(0) = uy,, c(s,) = Uy,

C: PC(S)

€S, c:ch(s)=c’(s)+en"(s)

n"(0) =n“(s,) =0 (13.5¢)
The length of the segment of the curve C between Pu(l) , P is:

Ue2)
PU(Z)
5, = jd§ (13.5d)

P“(l)

The elementary length A5 on C is calculated by the following relationships (terms up to the
first order with respect to € have been kept):

45% = g, (€(5))C(S)c(5)As” = g,,, (c(s) +€n(s))(¢#(s) + €(s)) (¢ (s) + €n*(5)) As* ~
~ As? (1 +€(10,g,,¢"¢" + ng,(é“ff))

A5 ~ As\/l +£(10,G,,¢"¢" +29,,C") ~ As + Asg(nKangc'“c"’ +2g,,C*)  (13.5e)

Given that the segment-length of C is extreme, we have:

. (S,-5,)
Ilm(T]_O (13.5f)

-0

Hence, by a combination of the relations 13.5d-f, we imply that:
j ds(n0,9,,c"¢" +29,,°0) =0 (13.6)
0

From 13.6 we obtain the subsequent equations:

N AR | oy e d .
_([ds (n 0,9,,c"¢ +%(Zgwc“n )-n g(ZQNKC“ )j =0

S

j dsn’ (0,9,,6"¢" -20,9,6°¢* - g,&*) =0

0

The last equation is true for any real function n*(s) hence we infer that *:

g, +%(—6ng +0,G, +0,G,,)C"¢" =0

From this and 11.16, we result the desired result:
ngE“ + ¢"¢" =0

Kuv

<A A AV
¢ +1,c¢" =0

Frame fields and connection forms on a geometric surface

Now, we try to simplify the formulations, especially with respect to the calculation of the
curvature on a geometric surface and the variation of the angle formed by a vector field
moving along a closed curve and the basis-elements of the corresponding tangent spaces.
This is achieved by the construction of two vector fields that are orthonormal in every
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tangent space of the geometric surface. These vector fields consist what is usually called "a
frame field" on the tangent spaces of the geometric surface ?. The vectors of this "frame
field" play the role of orthonormal basis-vectors at every tangent space of the geometric
surface; their construction is accomplished by applying the Cram-Schmidt procedure of
orthonormalization ® (), We calculate the Christoffel symbols related to the defined frame
field. We introduce the "connection forms", by using the concept of the covariant
differentiation expressed in the frame field and we use them to express and calculate the
curvature matrix of the geometric surface.

Consider a geometric surface S determined by the metric tensor:

g(w) =[g,, W] =[(e, W), e,W)]

The metric tensor is invertible (paragraph 7); hence:

detg#0

Let us also assume that for every u it holds that:

9,,(u) #0

Then we are possible to define at every tangent space T,S of S a linear transformation L,

determined by the following relations ) ();
1

L,(e)=¢ =¢ o (14.1a)
11

L,(e)=6,= 1 -e 912 +€,49,, (14.1b)

‘ Jdetg| g,

Relations 14.1a and b define the vector fields & (u), & (u) on the tangent spaces of S. For
each u the vectors & (u), é,(u) have unit norm and they are mutually orthogonal:
(8,(u),&,(u)) =3,

In brief, we say that the defined vector field is orthonormal. Such a field, defined on the
tangent spaces of S is called a "frame field" on S. The frame field determines an
orthonormal basis on every tangent space of the geometric surface.

According to 14.1a and b, the matrix of the linear transformation L, with respect to the
initial basis is:
1 1 —
Lu :[Lv]_(l‘l L2j_ 1 {\ldetg glz\/gllJ (141C)

LG L) g, detg\ o 9y,
The matrix of the inverse transformation is:

[

5 5 gll 912
L,=[L]= , [detg (14.1d)
gll

Remark: The determinant of the matrix L, = [LIVJ] is a function of the determinant of the

metric tensor only:
1

(detL,)” = deto@)

(14.1e)

Calculation of the Christoffel symbols in the defined frame field
How do the Christoffel symbols transform, under the change of the basis-vectors caused by
the linear transformation L,?
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Under the linear transformation L, the basis-vector field {e;(u),e>(u)} of the tangent spaces
T.S transforms to the frame field {él(u),éz(u)} according to the relations 14.1a and b:

&,(u) = e, (UL (u) (14.2)
The matrix [Lvu(u)] of the linear transformation L, is given by 14.1c.

The covariant differentials of the basis-vector field {e;(u),e.(u)} along the infinitesimal
variation Au = (Aul,Auz) of the parameters u=(u',u?) are given by the equations (relation

11.19):
D,e, =¢,[, ,JVKAu

Similarly?, the covariant differentials of the frame field {él(u),éz(u)} are determined by the

symbols IEHVK according to the equations:

D,.&, = &, Au" (14.3)
We can verify the subsequent identities:
D,,(eL}) = e, Loy Aus
D,,(e,)L) +&,D,, (L)) = e Lor Aur
D,,(e,)L, +e,8,L) Au* = e, 15T, Au®
A v
e, ML Au +e,0,l0 Au =e, Lﬁl’uk Au”
rV =Lols + L Tp L, (14.4)

Relation 14.4 affords us to calculate the Christoffel symbols in the frame field {& (u),&,(u)} if

we know them with respect to the original basis-field {ei(u),e;(u)} which is compatible to
the metric tensor g(u) determining the geometric surface in the u-parameter system. Notice
that no change of the parameters has been imposed; compare 14.4 with 11.12.

Remarks:

A) Expression 14.4 holds for any change of the basis-elements in the tangent spaces of S,
whence keeping the parameters unaltered. Nevertheless, under the linear transformation
14.1 we have constructed two vector fields defined on S, which are orthonormal for
every tangent space of S. That means that our surface is always a Euclidean plane? Of
course not! This would be true if only for any two tangent spaces TSiT1,,S and for

any curve a of the parameters’ domain, joining u), Uy the corresponding orthonormal
basis-vectors are the parallel transport of each other, with respect to the symmetric
connection @ i.e.:

ép (u(Z)) (p‘(1<az)> Uy (~ (u(l)))

Or equivalently, for any infinitesimal variation Au = (Au', Au?) of the u-parameters:

2 The symbols IEM and lzvi are determined by expressing the matrix-elements of the defined connection in

the defined frame field. For Au — (0,0) we have:

. _ . . . - 5 o’ (u,v 5 =
D&, (U)=®,,.4 (ep (u+ Au)) -é,(u)=¢, (u)((pj, (u,u+Au) —52) =é, (u)% Au* =&, (u)l ) Au”

/ are the matrix-elements of the connection with respect to the frame field: {él,ez}

o
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B)

C)

D)

D

1€ u =0

Of course, this is not true in general, as we can see by the relationships 14.3 and 4.

The fact that the vectors if the defined frame field are everywhere orthonormal, causes
some interesting consequences on the form of the Christoffel symbols when calculated
with respect to it. We depart from 14.3 and we obtain the subsequent identities:

/\
('Dz
\/
I
(e

D,,

—_—
‘E
~
~——
Il
o

(Das > (é,/D.8,) =0

(&, >r*Au +(&,,8)AAu" =0

(%er +8,7 )AuK -0

(The symbol 9,, stands for the Kronecker delta)

The previous identity holds for any infinitesimal vector Au = (Aul,Auz) of the parameter-

space; hence:

|2

+7, =0 (14.5a)

,_u\/K de f<e)\’ > 6Aul_v);\<

From 14.5a we result that the values of the symbols I:W, IEHVK are given by the following

equations:
Ty =Ty =0 oy =Ty =0 Ty 75y, =0 (14.5b)
Fh=rY, =% =r%=0 L+ =0 (14.5c)
Notice that the symbols I'W are no longer symmetric with respect to the last two indices
v,k as is the case for the symbols I'WK (I'WK I'HKV) Notice that I'WK arise from the

matrix-elements of the connection @ which is symmetric and compatible with the metric
tensor g(u); these matrix-elements have been calculated with respect to the basis-field
{ei(u),e,(u)} which obey the condition:

gw) =[g,, (u)]=[(e, ), e,W))]

Instead, by 14.5a we conclude that r

HVK

are antisymmetric with respect to the indices
4, v -the initial two indices.
According to the footnote of the present paragraph, the symbols IE:K are defined by the
relations:

Er o@) (u,v)

He ov"

v=u

The matrix [gzoﬁ(u,v)],v:u+Au, Au — (0,0) is the matrix of the linear transform

S —>T,S with respect to the frame field {& (v),é,(v)}, v eB defined by

(pu,u+Au u+Au

14.1a and b.
According to the section “covariant differentiation in a geometric surface” of the
paragraph 11, it holds:

(@) (v.u)] =[@ ()]
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(@5 (uu)]=[0}]
Hence we have:
@ (u,u+Au) @, (u+Au,u) = &

=y = )
[6/;\1 + a(p}\ (U,V) AUK](a‘j\ + a(pv (V, U)
ov® . ov”«

Au"} =&Y

- A

Fo s oL (v, u) o
ovX B

Fo oL (v, u) __F

E) We confirm 14.5b by a direct calculation (see relation 14.14):
First we obtain an expression of I'W

easily verified:
(&,,D,8,) = . Au

Au™p VUK
é =e,L,
D8, =D,, (e L5) =&, (M L, +0,L;) Au*

(&,,D,,8,) = (€5,6,) L& ( +aL°)Au
I:vuK BaK L\/ La + gBaLe 0 L;UJ
From the last identity we shall confirm, for example, that:
,:llK = 0
We have:

11K BaK L’f Ll + gBaLf 6KL1 /: Ll
aK (gBaLf LT) = aK (<e,81e )

L9+ 0, (Gpol 5) = 0,950 L5 LS — Gy 0L L5
(& >) (1)=0
/E

gBa KLl Ll gaﬁ LfaKLl gBa Lla L(-l7 BaK Llf Ll
aKgBa = I_ + /_aBK

ZI_IIKZI:BGKLlLl (rBaK+I_aBK)L1L1 BOKLle OBKLfL1+ OﬁKLlLfZO

Connection forms related to the defined frame field

analogous to 14.4; the subsequent identities are

(14.5d)

Consider the frame field {él(u),éz(u)} defined on the geometric surface S, according to the

relations 14.1a and b. On the tangent spaces of S, we define the 1-forms @,,

the frame field {& (u),é,(u)} according to the relationship:
@,,(AU) = (8,(L),D,,8,()), AU = e, (W)Au* €T,S

We combine 14.3, 5 and 6a and we result the identities:
@,, (AU) = (&,,D,,8,) =T, Au

Au™v MVK
@, (AU) =0 @,,(AU)=0

~12 (AU) = I_12KAUK = _I:21;<AUK = _@21 (AU)

We define the matrix-form:

related with

(14.6a)

(14.6b)

(14.60)

96



Qz(c?n d’lzjz(_o d’lzJ (14.6d)

The matrix  is antisymmetric.
By using the notation of the defined 1-forms @, the covariant differentials of the frame

field {&,&,} (relations 14.3) are given by the equations:

D,.&, = 80"T, AU = &,0"®,,(AU) = 8@, (AU) + &,@,,(AU)

Au=u

D,.& =&, (AU) = -é,w,,(AU) (14.7)
DAuéZ = é1 ~12(AU)

Calculation of the curvature tensor in the defined frame field
Let us reconstruct the curvature tensor with respect to the frame field {&,€,} defined in

14.1a and b, by following the reasoning path of paragraph 12.

Consider an infinitesimal orthogonal parallelogram An, (4, A,u) of the parameters’ u-

space with vertices the points:

u+A

u=(uhu?), u+Ayu, ut 4 U, U+ Ayu

(1)
Ay = (4u',0), A, = (0, Au)

(2)

The quantities Au', Au® are infinitesimals; in our calculations we keep terms up to the
second order with respect to them.

The infinitesimal orthogonal parallelogram An, (A(l)u,A(z)u) is mapped to an infinitesimal
closed region® Afl, of the geometric surface, with vertices the points:

'Du ! PU+A(1)U r Pu+A(1)u+A(2)u r Pu+A(2)u

We choose an arbitrary vector &, = éyé(o)" e T,S and transport it parallel to itself along the
boundary of the infinitesimal parallelogram.

Let £(v) =&, (v)&(v)" be the image of &, at any tangent space: T,S, v  8An, (AU, Ayu)

The covariant derivative of the parallel displaced vector field E(v) is zero:

DAUE (V) =0
Hence:
D, (6.4) = Dalf” +&,0,8" = &,(F1& +0,6")au" =0
rug +o,4 =0 (14.8)

The variation of the parallel transported vector field f(v) under an infinitesimal variation of

the parameters along the boundary of the parallelogram An, (A(l)u,A(z)u) is given by the
equation:

E(v+4u) = @, 4,, (EV)) (14.9)
From 14.9, we are getting the subsequent equations:

3 Given that the correspondence R* > B>u— P, €S is one to one, onto and continuous, any compact set C

of the domain is mapped to a compact set P(C) of the range; the boundary of C is mapped to the
boundary of P(C) ¥,
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é,(v+Au)é¥ (v+Aau)=,.,, (& (v))f” (v)=&,(v+Au)@) (v +Au,v)E(v)
&v (v+A4u) = &v (v)- IEQ’K (v)f" (v)Au~

D& (v) = & (v + Au) - & (v) = -T % (v)E (v) Aur

We write: AU =¢, (V)Au" €T,S

Then, from the previous identity we can define the 1-forms:

D€ (V) = - T4 (V& VW (AU), b =1,2

Dy&* (V) == T4 (VE' (V)< , p=1,2

The 1-forms w* are the already defined basic 1-forms (paragraph 8):
w“(AU) = w* (euAu”) = Au”©

We integrate the 1-form Doé“(v) along the image of an, (4, A,u) on S:

gu)p (u)- S(O)N (u) =~ CJS . (V)EA (v)w" (14.9a)
o (A, Aoyur)
We symbolize &, (u)=§, (u)f(l)“ (u)eT,S the image of &, (u) when the journey ends up
and the parallel transporting field returns to the original tangent space T7,S from which it has
been departed.
From 14.9a, by using Stokes-theorem (paragraph 8) and taking into account 14.8, we
derive the subsequent identities:
Ef Wby (W) == § TLEVe=- [ d(f%v)E Ve
any (A Ay 7y (4t Aay)

== [ dmEM)ae == [ (ThWE V) e

(At Azy) (At Aay)
~-0, (I:';’K (v)&* (v))‘ ) W AW (AU A AyU) =

—

=-0, (I:j\’K (v)&* (V))‘v:u ApUP A AU = (I:gKI:jp —8pI:jK)§(O)"A(1)u" A DU
Given that the parallelogram m, (A(I)U,A(Z)U) is infinitesimal, we have kept orders up to the

2" order with respect to the variations of the parameters; the 1% order terms have been
identically vanished.

We define the quantities:

é5\1101( = Fi\fp 5K _6pIE5\JK (149b)
We conclude that:
£ (1)~ &) () = (ﬁf\llz(u) - ﬁfm(u)) o) (WAL AU (14.9¢)

Remember that we have assumed that:
Ay =(4Au",0), Ay =(0,4u7)
The area of the curved image Afl, of the infinitesimal orthogonal parallelogram

An, (A(l)u, A(z)u) is given by the relationship:
area(Af,) = Jdet g(u)w" A w? (A,U, AnyU) = \Jdet g(u)A,u' A, u?

AU = e, (WAL, AU = e, (WA,u*, glu) = [<ep(u),ev(u)>]
Hence, 14.9c takes the form:
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Ri(u)E o, (u)area(Ar,) (14.10a)

) . 1
S W) =80 W) = 5o

The matrix [Iij(] is defined by the relationship:

RY = RE, - R

A2 T 21
By making use of 14.5c and 14.9b, after some tedious calculations we come up to the
following results:

Ry = R, = Riy = F%ng - szlig1 —51/55{2 + 62/55(1
Rll :FleEZ_Ffzfél =0

,QZZ =F§1F52_F§2F§1 =0

R =-0,7%, +0,7%, =—R(u)

R = 0,72 +0,12, =0, 0,7, =R = R(u)

[&]-Rw); ]

Relation 14.10 has been expressed in the orthonormal basis {é,,&,} where the metric tensor
[4,.] at any tangent space T,S equals to the identity-matrix:

g,, () = (&,(u),&,(u) =9,

In any case, the matrix [ﬁ ] is related with [ﬁj’] by the identities:

R, =G,R =(&,&)R
R =GR,

[5]- (0]

In our case:

(9" )= 19 ]=[04]
Hence we can easily verify that:
R]-#@)[] ]
Where:
R(u) = =0,T,y, + 0,151, = 0,15, — 0515, (14.10b)
=T

Finally, 14.10a takes the form (compare with 12.7a,b):
- - 1 R
é-(1)11 (U) - E(O)u (U) = ’_det g gu RKAE(O)A area (Aﬂu) (14.11)

IE/VJK = gu/\ F)\VK = 6IM IE

Avk

Remark: We quote the following relationships which are compatible with the formalism
used in the present paragraph. The verification of these relationships is not difficult to be
accomplished; do it as an exercise.

Let u” = u”(u) be a parameters’ transformation:
e, (u)&" (u) =&, ()&" (U) =&, (u)&" (u)
g, =(6,8)=9,,9,=(e,e), g, =(¢,8&)
&) = e, (W), [ (u)]" =[Z (u)]
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& ()= (u)€ (v

out =, « out -1 -
§" = _Ks JHE dea_K’[J'f] djflij’f:l

_ou* _ =
e, =8, au“:e b
&=Ly E=(D)E =08, 0=0,0-0"-
G, =(8,8,) = (e, &)L L0 = (&,8,) T I} L5 L2 = G,Q5 Q)
g" =g“Q: Q;

detJ
detQ= -~
2 —

detg - detg\dStL) _ detg _,

(det J)2 (det Q)2
detg = detg(det J)f2 = (det L)f2

How do 14.10 and 11 change under a parameters’ transformation?

We follow the reasoning path of the paragraph 12: we are thinking deeper into the
equations 14.10a and 14.11 hoping to find out a quantity that is invariant under any
diffeomorphic transformation of the parameters.

We transform 14.10a so that the coordinates of the vectors in each side are evaluated in the
initial basis-field {ei(u),ex(u)}.

& (u) = L (u)&" (u)
Eu (U) =& (u) = \/cltle_tg Ly Ry E;\sé(mﬁ area(4rl,)

Comparing this relation with 12.7a, we imply that:
R/ =LiRS L

R, =9, LR E (14.12)
We have seen that

[&]-Rw); ]
”,] =R(u)($ ‘Olj

According to 12.14b the quantity R(u) is related to the curvature K(P) at the point P of S
with the relation:

R(u) = K(u)det g(u) (14.13a)
In paragraph 12 we have seen that the curvature at any point P of S is invariant under any
parameter-transformation:

K(P) = K) =K(@) P u=(u,u')ed=(T"0), P=P, =P,

We wright 14.12 in matrix-form and equate the determinants of each side:
0 -1) = 0 -1
R =R(u)gl’ Lt
w(§ o )-rwer (s o)

R? = R? detgdetLL
detL
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We combine this with 14.13a and we result that the curvature at P is calculated by the
analytic expression:

R(u)
Jdetg(u)

The value of the function R(u) is given by 14.10b:

K(P) = (14.13b)

R(U) = _61/_212 + 62/_211 = 61/_122 - 62/_121

In matrix-form 14.11 is written as follows:
1 c 1 z 1
[(’f‘”z] = [f‘“’zj + K(u)area(Aﬂu)[o _1] {%")ZJ (14.14)
Say o) 1.0 So)

Application for the case of a spherical surface

Example 14A

The geometric surface corresponding to a sphere S of radius b, in a system of parameters
u=(ut,u?) is determined by the metric tensor (see example 12A):

b* — (u*)? 0
g=[9g,]= 0 p? (14A.1a)
b2 _ (UZ)Z

The domain of the parameters u?,u? is identified by the relations:
u'eR, U’ e(-b,b)
The sphere is a surface of revolution; hence the correspondence u=(u',u’) > P, €S is

periodic (period=2m7) with respect to the parameter u'. As a consequence, the tangent
spaces T, , , S S are identical:

(T T(u1+2n,u2)

T,.,S=T

(ut,u?) (u*+2m,u%)
The vectors of the basis-vector field e, (u*,u”) corresponding to the metric tensor g(u), are

periodic functions with respect to the variable u':
e, (') =e,(u' +2m,07) (14A.1b)

From 14A.1 we imply that:

b2
(e/6) =(e€)=0,(e,e)=b- ("), (e,e) = b — ()
On S we have defined the symmetric connection @ which is compatible to the metric tensor
14A.1a. The corresponding Christoffel symbols with respect to the basis-vector field
{ei(u),ez(u)}, have been calculated in the Example 12A, relations 12A.2, 3.

In the present Example, we use the already defined frame field {él(u),éz(u)} (see relations

(14A.2a)

14.1a and b) and we express the matrix-elements of ¢ with respect to this basis field. We
calculate the curvature of the sphere by applying relation 14.13 and compared the result

with 12A.4.
The elements of the frame field are determined by 14.2:

= _ A
ep_eALu
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_ v | _ Lll L; _; \/detg _912\/5
L_[L’J—[Li Lij_\/gndetg( 0 g, ] (14A.20)

According to 14A.1a:

[ - 1 b 0
C bp? — ()P \0 B - ()
_ 1 _ b* — (u?)?
The inverse matrix of L is given by the expression:
B } 1 b2 _ (UZ)Z 0
L=t — 14A.2d
def ,bZ _(u2)2 [ 0 b ( )
The determinants of L and L are:
detL=1/b,detl =1/detL=b (14A.2¢e)

We notice that L and L are independent on u'. Hence the frame field {él(u),éz(u)} maintains

(14A.2¢)

the periodicity of the original basis-vector field, with respect to the parameter u':
é,(u'v?)=é,(u" +2mu?) (14A.3)
We calculate the Christoffel symbols with respect to {&,€,} by using 14.5b and 14.5d:

I:V/JK = /:BaK L\lj LZ + gBaLe aKLZ

We find that:
_111=_112=0 1:221=I:222=0
Max + Mo = 0 (14A.4)
nd = u2 = =
/_121 = _rzn = _F ,_122 _/_212 =0

Remark: The basis vectors of the frame field have everywhere unit length and they are
orthogonal. However they do not transport parallel to themselves: from (14.3) we can easily
verify that:
T
D,E =é& —Au
Au™l 2 b
- .U
D, & =-& —Au*
Au2 1 b

We are now ready to calculate the curvature at every point of the surface, by applying
14.13; we only need the value of the quantity R(u) given by 14.10b:

=

121

"i(u) = _61/_212 + 82/:211 = 81/:122 -0,

~ =~ =~ 0 uz 1
R(U) = =0,T 51, + 0,15, = WEFJ = b
Hence:

K(P) Rw) 1/b 1

" Jdetaw) ¥ B

This is the expected result (see Example 12A).
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Example 14B
Variation of the angle formed by a parallel transported vector field along a closed
curve, with the corresponding vectors of a specific frame field
Application for the case of a sphere

In the section A of the present example, we verify that the norm of any parallel displaced
vector field along the boundary of an infinitesimal parallelogram of the parameters' space is
invariant. This result is accomplished by expressing the coordinates of the vector field with
respect of the frame field defined by 14.1a and b and applying relation 14.14.

In section B we calculate the variation of the angle formed by the parallel displaced vector
field with one of the corresponding elements of the frame field along the mentioned
infinitesimal loop. We come to the very interesting result that the total variation of this
angle is proportional to the curvature of the geometric surface at the vertex of the
infinitesimal loop.

Finally, in the section C of the example, we apply the general equations derived in section B,
on a geometric surface corresponding to a sphere. The objective is to verify the general
relations for that special case, by following different reasoning paths and comparing the
results.

A. According to 14.14, the variation of any vector £, (u) e T,S transported parallel to itself

along the boundary o, (4, 4,u) of the infinitesimal parallelogram 7, (4,u, A,u) of the
parameters’ space, is given by the equation:
Eay = &y +(-E:6y + &' | Karea(4rT, ) (14B.1)
E0)(U) = &, (W), (U)
We recall that:
a) the basis {€ (u),&,(u)} is orthonormal: (€,,¢é,) =3,
b) the vector &, =§, (u)é(l)“ (u) eT,S is the image of &, when the parallel displaced field
has been returned to the initial tangent space T,S of S
c) the region A/, is the image on S of the infinitesimal parallelogram 1, (A(l)u,A(z)u) of the
parameter-space; it is determined by the point P, of S and the tangent vectors:
AU =€ (A u, AU =é,(u)A,u”
d) area(4r,) = Jg() @' » @ (AU, AnU) = Ja() @' A @* (AU, AU)
e) K(P) symbolizes the curvature at the point: P =P, S, u = (u',u*)
The connection ¢ is an isometry (paragraph 11). Hence, the length of any vector field

created by the parallel transport of an “initial” vector along a curve C of S is invariant along
C. We verify this statement for the case of the vectors &, and &,, of 14B.1, by keeping

terms up to the first order with respect to the infinitesimal area of the elementary
parallelogram.

(Eyr &) = (Eoyr &) + <é1§(0)1 v eE 2 E 7 é25(0)1> 2K area(Af,)
<§(1)' E(1)> = <€<0>' 5(0)>

[
B. We shall now calculate the variation of the angle 6 formed by the parallel displaced

vector with the vector € (u) of the frame field. We name 6, the angle of &, €T7,S with
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é(u) and 6, the angle of &, €T,S with € (u) then, the variation A6 we are looking for

equals to the difference:
AB=6,-6,

Assume that the parallel transferred vector & is of unit length. Then, we can write:

&y = €, (u)cosB, +§€, (u)sing,

&y = & (u)cos(6, + A8) + &, (u)sin(6, + AB)

By applying 14.14 or 14B.1, we derive the equations:

cos(6, + AB) = cos B, — K (u)sin6, area(All,)

sin(6, + A8) = sinf, + K (u)cos 8, area(Af,)

We expand the trigonometric functions appearing in the previous equations in Taylor series

and keep terms up to the first order with respect to the variation A6 of the angle; we

obtain the following result:
A6 = K (u)area(Ar,) (14B.2)

By applying 14B.2 we are possible to calculate the change of the angle formed by any vector
transported parallel to itself along any closed curve of S and returning to its initial position,
with the vector & (u) of the frame field:

S = Q S'
-
l AN, Tl An'y, T
e
P, —>» P, Q'
AI-Iu(total)

Figure 14.1: Parallel transport of a vector along two
successive infinitesimal loops.

Consider the vector field &(v) generated by the parallel transport of a vector &, eT.,S
along the successive, neighboring regions Afl,, Afl/, (figure 14.1). We can easily verify (use
equation 14.9a) that the images of the initial vector &, € T,S after following either of the
following alternative paths are identical:

P>P.-Q'5>S">Q—>S—>P,

P>P.-Q'5>S"5Q—>P,. >-Q—>S—>P,

Hence the variation A8 of the angle between &, and its final image is given by the

equation:
A6 = K (u)area(Arl,) + K (u')area(ArT,,) (14B.3)

Relation 14B.3 can be used to calculate the variation of the angle 6 formed by the vector
field &(v) =) (E(O)) with é(v) along any closed curve c of the space of the parameters.

We only have to approximate the region unclosed by the curve c with a collection of
infinitesimal parallelograms and apply 14B.3 (figure 14.2). The result is:

Brros — Oiniiar = || K(u)da = [[ K(u)det g(u) w' A w?(4,U, 4,V) (14B.4)
R R
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C: the boundary of R

[

vl
A
-~
<
~

A D

=]

Figure 14.2: Variation of the angle of a parallel displaced
field along a closed curve on S.

C. Application and test of 14B.4 for the case of the parallel transport of a vector along a
parallel circle on the surface of a sphere S:

We have already seen that a geometric surface corresponding to a sphere of radius b is
determined by the metric tensor 14A.1a and the relative basis-field {e;,e;} obeying the
conditions 14A.1b and 14A.2a. The choice of the parameters u?, u®? comes from the
corresponding parameters u!, u? used for the determination of any point P on a spherical
surface of center O and radius b embedded in the 3-dimensional Euclidean space, with
respect to an orthonormal coordinate system Ox'x?x®> whose principle is at the center of the
sphere: u!is the polar angle of P related with the axis Ox® and u? is the projection of the
vector OP on the axis Ox> (figure 9.1).

A parallel circle C, on the sphere S, is the image of the curve ¢, in the parameters’ space,
defined by the equations:

c Y =a,q<[0,2n]
“ |l =z=constant, —-b<z<b

Let us now consider the frame field {é,,é,} defined by 14A.2c and the vector field:
E(qlz) = éu (ql Z) gu (ql Z)

The vector field E(q,z) is generated by the parallel transport along C,, of the vector:
§(0,2) = &0 = &(0,2)

The length of a vector field created by the parallel transport of an initial vector along any
curve of the geometric surface S is invariant (Example 14B-section A); hence the length of
&(qg,z) is unit at any point of the parallel circle C,:

€(q,2) = |&,(0,2)| =1

The angle formed between &, and & (0,Z2) is:

6o =1/2

We are going to calculate the angle 6, formed by &, =&(2n1,z) with & (2r,z) =€ (0,2)
(see relations 14A.2, 3 and “Example 9A"), by following two paths:
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a) We solve the equation D,&(g,z)=0 along the curve C, with initial condition
c‘;’(O,z)d?f&(o) = &,(0,z) and we obtain the analytic form of the field &(qg,z) explicitly.

b) We apply relation 14B.4
We compare the results obtained by these two alternative methods.

Path a

The vector field E(q,z) is transported parallel to itself along the curve C,. Hence the
subsequent relations are true:

D,,£(q,2) = D,,(&,€") =0, Au = (4q,0), Aqg -0

3,,D,,8" +(&,/D,,6,)€¥ =0

Au=u
d&” du”
dg

+/—VHK§pd—q = 0
au
dq

du?

dq

=1

The symbols IEVHK have been calculated in 14A.4; we substitute in the previous system and
we are led to the differential equations:

A&z g _
dg b
. (14B.5a)
d_fz Eé‘l -0
dg b

The solution of 14B.5a with initial condition E(O,z)d:ff(o) =&, (0,z) is given by the functions:

,..1 _ . E
& —sm(bqj
£ E
& _cos(bq]

According to 14A.3, for g =2n the vectors of the frame field are identical to the initial
vectors of the frame field, at g=0:
é,(0,2)=¢,(2n,z2)
For g = 2r1 the vector field E(q,z) returns to its original tangent space:
Sy dzfcf(Zn,z) S e o S Naas (14B.6)

By 14B.5b we result that at the end of its trip along the parallel circle C,, the field E(q,z)
takes the form:

(14B.5b)

Sw =& (Orz)sin(z%}éz (O,Z)COS[Z%) (14B.7)

From 14B.7 we can easily calculate the angle 6, formed between &, and & (0,z)

_ <é1 (012)1‘5(1)> . (2nz
Ccos 6(1) - m = SIH(TJ
2

We conclude that the angle between &, and &, is:
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15.

9 2nz

A6:9 (O)Z—T

b = (14B.8)

Path b

Now, we are going to calculate A6 =6,

46 =6,y - 0, = [[K(u)da = [[K(u)Jdet g(u) @" A w*(4,U, A,U)

R

-6, by applying 14B.4:

C, = R, detg(u) = b?, det§(u) = 1
AU = e (W)Au' = & (u)yb* - (*)* At
b

/bz _ (u2)2

W' (4,U) = Aut, @' (4,U) =0, 0 (A,U) =0, 0 (A,U) = A

AU = e,(u)Au® = é,(u) Au?

. ) . - b
@' (ApU) = {b* - (Y A, @' (AxU) = 0,0 (A,U) =0, @ (A,U) = WAUZ
area(Arl,) = \g(u) @" A @ (AU, A,U) = Jg(u) 0" A @* (AU, AyU) = bAu'Au?
Hence:

1% 0 z 2nz
A8 =6, -6 = 5 _! dul_[du2 -2n= 2n(1—5j—2n ===

This result is identical to 14B.8.

Geodesic curvature

In the first section of the present paragraph we are going to define the tangent and the
normal vector field on a curve lying on a geometric surface S. From the relation of these
vector fields and their variation along the curve, the notion of the geodesic curvature, along
with the Frenet-Serret equations of the curve, is emerged.

Let us consider a certain curve c(s)=(c1(s),c2(s)) lying in the parameter space of the

geometric surface S and its image-curve C:s —» P, €S on S; the parameter s is the length

of the image-curve C:

s 1/2
s = [(9,,(0)dc*(0)dc* (0))

0

The coordinates of the tangent vector ¢(s) = (c'l(s),c'z(s)) of ¢ satisfy the condition:

9,,(S)cF(s)c’(s) =1
As usually, we symbolize:
X dct(s)
H —
¢ (S)d;f ds
We define the vector field T(s) which is tangent to the curve C, at its points P.s) and its
length is unit for any value of s:

T(s) =e,(c(s))c’(s)e T S
(T(s),T(s)) =1
The variation of T(s) along C is calculated by its covariant differential:
D, T(s) = ev(c)(c’:’v + 2 .(€) C“C'K)As, As >0 (15.1)
Given that T(s) is of unit length, we imply that:
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(D, T(s),T(s)) =0 (15.2)
Hence the covariant derivative of T(s) is a vector in the tangent space TS normal to the
tangent vector T(s) of C:
DdcT(s) _ ||m DACT(S)
ds defias>0  As
Let k4(s) be a differentiable real function of s and N(s) a unit vector field N(s) e T_.,S such

c(s)
that:

= e,(c)(¢" + Ty (c)ever)

D, T(s)
ds
The real function ky(s) is called “the geodesic curvature of C” and N(s) “the unit normal
of Con S”".

=k, (s)N(s) (15.3)

Remark: Notice that there is an ambiguity about the definition of k,(s) and N(s) having to
do with the choice of the orientation of N(s). We treat this problem as follows:
Consider the frame field {él(s),éz(s)} defined in paragraph 14. In each tangent space TS

the bilinear antisymmetric form @' A @ is defined (see paragraph 8):
@' (él(s)) =1, @ (éz(s)) =0, @ (él(s)) =0, @& (éz(s)) =1
D' A @ (8,(5),8,(5)) = -@" A @ (&,(s),8,(s)) =1
Given that T(s) is of unit length, we write:
T(s) = é,(s)cosB +&,(s)sin6
The angle 6 is formed by €,(s) with T(s).
N(s) is of unit length and orthogonal to 7(s). Hence it might have one of the forms:
N(s) = —€,(s)sinf + &,(s)cos 6
Or:
N'(s) = €,(s)sin6 —é&,(s)cos 6
We choose the orientation of N(s) so that the following equation to be satisfied:
@' A @ (T(s),N(s)) = +1
Hence N(s) is determined by the expression:
N(s) = —€,(s)sinf + &,(s)cos O
[}

In order to simplify the symbolism, we introduce the symbol D. meaning the covariant
derivative of a vector field along the curve C. We write:

DT(s) = e () _ iy DacT(S)
¢ df ds = 4s-0  As

= e,(c)(¢" + Ty (c)¢¥er)

We summarize the following identities:
D.T(s) = k,(s)N(s)

(D.T(s),N(s)) = k,(5)

(D.T(s),N(s)) +(T(s),D.N(s)) =0

(kg(s))2 = (D.T(s),D.T(S)) = G, (¢" + T (c)c¥c ) (" + T (c)eee)
D.N(s) = -k, (s)T(s)
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If the curve C is a geodesic on S, the covariant derivative of T(s) is zero for every s. Then,
from 15.3 we infer that its geodesic curvature k; equals to zero for any value of s, and vice
versa; if ky(s)=0 along C, then C is a geodesic of S.

Variation of the angles formed by the tangent of a curve on a geometric surface
and a certain frame field
When we are moving along a curve C of S, the angle 6 formed by the vector field T(s) and

the element & (s) of the frame field {&,(s),€&,(s)} defined in paragraph 14, is changing. The

variation of 6 is caused by two factors: a) the analytic expression of the curve, b) the
connection defined on the geometric surface. In this section of the present paragraph, we
derive an analytic formula that affords us to calculate the variation of 6 if we know the
geodesic curvature of the curve as a function of its length s and the connection forms
corresponding to the frame field {él(s),éz(s)} of the geometric surface.

Consider again the curve C on S which is the image of the curve c in the parameters’ space.
The parameter s of the curve c is the length of C measured from some point Py of C. We
symbolize:

c(s) = (c'(s),c*(s)), Ac = (Ac', Ac?), Ac* = ¢*(s)As
AC =g, (c(s))Ac” = e, (c(s))c"(s)As

Starting from 15.3 and using 14.7, the subsequent relationships arise:
D, T(s) = k,(s)N(s)As

D,.(é,(s)cosB +&,(s)sinB) = Ask,(s)(-€,(s)sin6 +&,(s)cosb)

D,.& cos6 +éD, cos6+D, &, sin6+é,D, sinf = Ask (s)(-€, sinb + &, cos6)

&, (—sin6 A6 + @,,(AC)sin6) + &, (cos 6 AB — @,,(AC)cos6) = —€,As k, sin6 + €,As k, cos O
46 = k,As +@,,(AC)

We conclude that the variation A6 of the angle 6 formed by T(s) with & (s) when moving
along the curve C from its point C(s) to the neighboring one C(S+As), As — 0 is calculated

by the equation:
A6 =k, As + @, (AC) (15.4a)

The connection forms @,, have been defined in paragraph 14; they are related to the frame
field {&(s),&,(s)} (see relations 14.6a-d):

@,(AC)=0 @, (AC)=0

@,, (AC) = I, Ack = T, Ac* = -@,, (AC)

According to 15.4a, if we move on C from a point C(s;) to another C(s;), the variation of the
angle 6 is calculated by the equation:

C(s) C(s)
6, -6, = j k,(s)ds + j @,, (¢(s)ds) (15.4b)
C(sy) C(s1)
For the case that C is a geodesic, the previous relation is reduced to the following
C(s2)
6,-6,= [ @,(c(s)ds) (15.4c)
C(sy)

109



An expression of the curvature in the language of the connection forms

In this section we relate the variation of the angle 6 formed by a parallel transported vector
field along an infinitesimal loop with the element & (u) of the frame field {él(u),éz(u)}

defined in paragraph 14. We derive a relation of the total variation of this angle with the
connection forms and another one involving the curvature of the surface. From the
combination of these relations, the intimate relationship of the connection forms with the
curvature of the geometric surface is emerged, usually called "the second structural
equation" .

Consider the frame field {él(u),éz(u)} and the connection on S determined by the Christoffel

symbols r

VUK

with respect to the considered frame field (see paragraph 14). Assume again,

an infinitesimal orthogonal parallelogram An, (4,u, A,u) of the parameters’ u-space with
vertices the points:

u= (ul,uz), U+, u+Ayu+Ayu, u+Ayu

Ay = (4u',0), Ayu = (0,40%), Au* -0, Au® - 0

The parallelogram An, (4, 4,u) is mapped to the closed region Afl, of S.

Let us now create the vector field {(v) by the parallel transport of a vector &, (u) eT,S
along the boundary of the infinitesimal parallelogram; we write:

E(v) =&,(V)E*(v), v € aAn, (Ayu, Ayyu)

&o)(U) = &, (Uu)cos B, +&,(u)sinB, TS

The vector field &(v) is of unit length (see paragraph 11); hence:

E'(v) = cosB(v), &2(v) = sinB(v)

The angle 6(v) is formed between &(v) and the element & (v) of the frame field.

Let &,,(u) = € (u)cosB,, +&,(u)sin6,, e T,S be the form of the field &(v) when it returns to
the tangent space 7,5 from which it has been departed. According to equation 14.14, the
variation of the components of the vectors &, (u) and ¢&,,(u) is calculated by the relations:
cos(B,,, + 46) = cos 6, — K(u)area(All,)sing,

sin(6,,, + 46) = sin, + K(u)area(Afl,)cos 6,

We have put 6, =6, + 46 and have kept terms up to the first order with respect to the

area of the infinitesimal region. We imply the equation:
AB = K(u)area(Arl,) (15.5)

We now express the area(Afll,) with respect to the differential 1-forms @" determined by
the relations (paragraph 10 and Example 14B, part C):

@ (EW))=a" (6, VE W) =€ (V)

Define:

AU = e (AU = & (W)EAU

AU = e,(nAU = & (u)BAu?

According to the remarks of paragraph 14, we get:
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det [(u) = m _ Jdetg(w)

area(4rl,) = \Jdet g @' A w* (AU, A,U) = det L Au'Au?
@ A @ (ApU, 4,U) = @' £ @7 (&,5Au",€,540°) =

= LAU'B AW - LA AU = det L Au'Au? = area(Af,)

Hence:
area(4rl,) = @' r & (AU, AyU) (15.5a)
From 15.5 and 15.5a we infer that:
46 = K(U)@" A & (4,U, AnU) (15.6)

On the other hand, given that &(v) is been transported parallel to itself along 0All, the
variation 8&*(v) of its components satisfy the equation:

684 (v) = =T, (VEN(V) S~ = T, (V)E"(v) Ou~

Where:

(a) The couple dou = (5u1,6u2) determines an infinitesimal transport from the point v to the
point v +&u along the boundary éAn, (4, 4,u) in the parameter-space.

(b) The vector 6U =g, (v)Ou” eT,S corresponds to the infinitesimal transport v — v +du

along 8An, (4, Ayu) in the space of the parameters.

(c) The vector field &(v) is of unit length and we can write:

EX(v) = cosB(v), E*(v) = sinB(v)

(d) The action of the 1-form @,, at oU = ¢, (v)Ou” e T,S returns (relations 14.6a,b and c):
@,,(AU) = [, (AU = Ty, (W) (AU)

The external derivative of @,, is the 2-form (relation 8.9):

da,, (AnU, AU) = Ay, 0@ (AyU) = 0,75 (U4 U* A AU

Y SV ) o

By using 14.5b, 14.6b and applying the Stokes’ theorem (relation 8.10a) we derive the
consequent relationships:

0&! = I, E20u" = —@,,(5U)E?
-sin@066 = -@,,(6U)sin6
06 = @,,(0V)
260=6y -0 = § @,0U)= [[ da,~dd,(4,U,A,U)
oA, (&1, A) A, (A, Ayu)
As usually, terms up to the first order with respect to the area of An, (A(l)u, A(z)u) have been

kept. Hence we end up to the relationship:

46 =da,, (4,U, 4,V) (15.7)

We now combine 15.6 and 7 and we derive the identity:
d@,, (AU, AU) = KW) @' A @ (AU, A,U) (15.8a)
dd,, = K(u)@" A & (15.8b)
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The derived equation 15.8b relates the connection forms with the curvature of the geometric
surface; it is known as the "second structural equation" of the geometric surface @,

Example 15A
Application of the second structural equation for case of a sphere

In this example, by applying relation 15.8, we are going to confirm once more, that the
curvature of the sphere S defined in the Example 14A, is given by the relation:

Kw)=1/b*
The implementation of this objective requires the evaluation of the 2-form @' A @* and of
the external derivative of the 1-form @,, for the case of the sphere S. Then, by substitution

of the achieved analytic expressions in 15.8, we expect to obtain the correct result for the
curvature of S at anyone of its points.

a) According to the definitions of the 1-forms @', @* (see paragraph 15-geodesic curvature)
we have:

@' A @ (ApU, 8,)U) = @' A @ (e,A0\" €,8,u" ) = @' A& (E,L, A", &[4, u") =
= @' (6,04, )@ (8,04,u" ) - @ (8,LLA,u" )@ (6,0, 4,u" ) =

= LA LA ~ L AU L A" = L (40 Apu” = D Ay ) =

=L o A" (AU, AnU) = (LGB - B o' A (AU, 4,U)

Hence:
1
Q' A @ = W' A w? 15A.1
T det " ( )

According to 14A.2e of the example 14A, we have:
detL=1/b

Q' AD* =bw' AW? (15A.2)
b) From 15.8b and 14A.4 (see example 14A), we have
. = B u?
W, = 12K(U)w Z_le

- u? u? 1
do,, =0, (—FJw" AW =0, [—Fjwz AW = Ewl AW
By taking into account 15A.2, we obtain:

(/1))

1 . -
b =S @ AQ°
b

We conclude that:
Ku)=1/b*
This is the anticipated result.

The Gauss-Bonnet theorem

The Gauss-Bonnet theorem offers a way to calculate the sum of the angles of a polygon on
the geometric surface S, whose sides are segments of geodetics of S. Such a polygon will be
called “geodesic polygon”. The formulation of the problem and the outlined proof of the
stated theorem is an immediate result of the preceding sections of paragraph 15. The most
interesting notification pointed by this theorem is the dependence of the sum of the angles
of the geodesic polygon on the curvature of the geometric surface. In the case of a
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Euclidean plane, where the curvature is zero, the theorem is reduced to the well-known
from the Euclidean Geometry relation:

N

Y0, =(N-2)n

j=1

N (N>2) is the number of the sides and ¢; j=1,2...N are the internal angles of the
polygon.

We shall formulate this theorem for the case of a geodetic triangle of S and we leave the
generalization as an exercise for the interested reader.

Consider the triangle P;P,P; of S (figure 15.1), where the points P;, P,, P; are images of the
points u(1y, Ue), Uy of the parameter-space:

T31(uq)) gl(u(l))

Figure 15.1: A geodesic triangle on a geometric surface S. At each vertex P;, the tangent vectors
of the intersecting sides are related by a rotation transformation with angle: - ¢,

We symbolize ¢, the internal angle of the triangle corresponding to the vertex P;.

(12
Uy = (”(1)/“(1)) - A

Upy = (“(12)""(22)) - B
1 2
Uz = (U<3)'U(3>) - P
The sides P;P,, P>P3, PsP; are segments of geodesic curves of S. The corresponding tangent
vectors of unit length are symbolized by T,,(u), P, € PP, and so on, as is illustrated in figure

15.1.

Now, imagine that we are moving together with the frame field {él(u),él(u)} along the sides

of the triangle, starting from the vertex P;: from P; we go to P,, then to P; and back to P;.
As we are moving on the perimeter of the triangle, let us watch the changes of the tangent
vector at each side:

We have named @, the internal angle of the triangle at the corresponding vertex P; j=1,2,3.
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At every vertex P; of the triangle, the tangent vector has to be rotated at an angle - ¢, in
order to become tangent to the next side.

Let us name O(u) the angle formed by the tangent vector T;,(u) with the element
€, (u) eT,S of the frame field, at any point P, of our journey. At the end of the trip the
tangent vector comes to its original position: it is identical to the initial tangent vector
T12(u(1)). Hence, the total change of the angle 6(u) equals to 2n (figure 15.1).

We symbolize:

a) 6 djfe(u(l)) the initial angle of the Ty,(ug)) with &(u) when we depart our journey,

b) 6,. =6

pinal ;= Ornai (u(l)) the final angle of the same vectors after the journey along the triangle

perimeter has been completed:
These two angles differ by 27 rad i.e.:
elfinal - 91 =2n

At the same time, the total change 6,,., -6, of the angle 6(u) is calculated from the

final
expression (see figure 15.1):
Oy —6,=6, -6, +01—-@Q,+6, -6, +n1 -, +6;, -6, + 11— P,
We conclude that:
21 =(6;-6,)+(6;-6,)+(6; -6,)— (o, + @, + ;) + 31
P+, +P; = I'I+(91' _61)"'(62, _62)"'(63" _63)
Given that the sides of the triangle are geodesic segments, we apply equation 15.4c and the
previous expression takes the form:
P +P, + Py =11+ gS @,, (T(s)As) (15.9a)

a(RRP)
The integral at the right hand side of 15.9a has to be calculated along the boundary of the
geodesic triangle P,P,Ps.
By applying the Stokes’ theorem (relation 8.10b) 15.9a is transformed to the following:

@+ @+ @y =+ [[ da,(4,U,4,U) (15.9b)

(RPPs)
AU = e(wAu' TS, AU = e,(WAU* TS, P, (PleFg)
The points P, belong to the geodesic triangle.
The infinitesimal parallelograms 1, (AU, A,u), Ayu = (Au',0), Ayu =(0,4Au?) specify an
appropriate partition on the parameters’ space that, in turn, determines a partition of the

geodesic triangle on S, appropriate to carry out the calculation of the integral (see for
example, paragraph 14).

We proceed by using 15.8b; we find that:
@+ @+ Py =n+ [[ KW@, Ad,(4,U, A,U) (15.9¢)

(O]
GLY)

K(u) is the curvature of S at its point P, of the geodesic triangle.
Finally, by using 15.5a, equation 15.9c takes the form:

P +P,+ Py =11+ H K(u)area(Ar,) (15.9d)

(RPP3)
As usually (see paragraph 12), Afll, symbolize the image of the infinitesimal parallelogram

n, (4uu, A(z)u) of the parameter-space, on the geometric surface S. From 15.9d, it is obvious
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that if our surface is flat i.e. if its curvature is zero everywhere, then the sum of the angles
equals nn rad, which is the case of a Euclidean plane.

Example 15B

Application of the Gauss-Bonnet theorem for the case of a geodesic triangle on a
sphere

u=f(s)

(AB)=(AC)=nb/2

(BC)=bO

Figure 15.2: A geodesic triangle ABC on a spherical surface. The
wmoﬂwmmmmawmsB:A+B+é:n+6

Consider the geometric surface corresponding to a sphere S, described in the Example 14A.
In the present example we are going to check relation 15.9d, for the case of a geodesic
triangle of S. First we show that the meridians circles and the equator are geodesic curves of
S. Next we consider a triangle ABC on S determined by two meridians and the equator. Let
A be the pole of the sphere and B, C the intersecting points of two meridians with the

equator (figure 15.2). It is evident that each of the angles B and C of the triangle equals
n /2 rad. Hence, If A=0 (,2\ is the angle determined by the tangents of the two meridians
at the pole A), we anticipate that the sum of the angles of the triangle ABC equals n+0
rad: A+B+C=n+0

We are going to confirm this anticipation, by applying the general equation 15.9d in this
particular case.

A) Geodesic curves on the sphere S
Let c:c(t) = (cl(t),cz(t)) be a curve of the parameter-space, corresponding to a geodesic C

of the sphere S. The parameter t is arbitrary. According to paragraph 13, if the image C of ¢
is to be a geodesic of S, c!(t), c(t) should be solutions of the differential equations resulting
by the consequent equations:

Ac = ¢(t)At, At -0

D, (e,(c(t))¢" (t)) =0
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D,. (e, (c(t))c"(t) +e,(c(t))c" (t)At =0*
lold +l=u”Kc'”c"< =0
For the case of the sphere, the symbols I:HVK have been determined in 12A.3; we find that

cl(t), c*(t) are solutions of the equations:
2
él—bzf—c(cz)zc'lc'2 -0 (15B.1a)

2 2

¢? +%(b2 —(Cz)z)(él)2 +bz—c—(c2)2

(@) =0 (15B.1b)
From the explicit form of 15B.1a and b, we can easily verify that the following curves are
solutions:
a) The curve defined by the equations:

¢t=0

c’=0
This curve of the parameters’ space corresponds to the equator of the sphere; i.e. the
equator is a geodesic curve of the sphere S.

(15B.2)

b) Let us try to test if a curve with analytic expression: ¢! = @ = constant is a geodesic of S:
b1l) equation 15B.1a is satisfied,
b2) the second equation (15B.1b) takes the form:
2
- c 2\
C +bz_—(cz)2(C) =0 (1583)
Let us identify the abstract parameter t with the parameter s, which represent the length of
the curve from any of its fixed point Po. We set c*(t)=f(s) and we obtain the subsequent
equations:
p_df
def ds
C2
b2 _ f2
c*(t)At = f'(s)As

f:n2 + frz — 0

» B B
(45)" = g, (A1) = = (€) (A1) = 7 (F 45

f’:% [bZ_fZ

" 1 -1/2 ’
fre—p(b? ) e

We imply that fis a solution of the differential equation:
f(b(b2 —F) - 1) 0
We reject the option f=0 and we reduce the last equation to the next:

ar 1
— = —\p*-F? 15B.4
ds b ( )

oF (¢)
oc’

* According to 11.20, for any differentiable real function F(¢) we write: D, F(¢) = c'at

For F(¢)=¢" we obtain: D, ¢* =5/ &' At = &'At
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The solution of 15B.4 is given by the analytic expression:

f(s) = bcos(cos1 E@j—%s] (15B.5a)

We choose f{(0)=-b and 15B.5a takes the form:
f(s) = —bcos(%s] (15B.5b)

We infer that the analytic expression of the curve c of the parameters' space corresponding
to a geodesic of S is:

c(s) = (cl(s),CZ(s)) = (@, —bcos(%sD (15B.6)

These geodesics are identical to the semi-meridians of the sphere, specified by the values of
the constant angle © (figure 15.2).

The parameter s is the length along a semi-meridian; its maximum value is obtained for:
c’(s b

max) -

cos (1 smaxj =-1
b

Hence:

Sax = Mb

For a point on the equator, we have:
c*(s)=0

cos[%slj =0

_
2
It is clear that all the previous results are been anticipated.

S

B) Calculation of the sum of the angles of the geodesic triangle ABC

According to the Gauss-Bonnet theorem, the sum A+B+C of the triangle ABC illustrated in
figure 15.2 is calculated by applying the relationship 15.9c. For the case of our application,
the consequent relations are true:

A+B+C=n+ [[ K(u)area(arn,) (15B.7)

(RP:Ps)

K(W) =2

detg(u) = b*

area(Arl,) = Jdetg(uv) w" A W’ (AU, 4,V)

AU = e (WAL, AU = e,(u)Au?

Hence:

area(Arl,) = bAu*Au?

The parameter u' runs the values from 0 to @ and the length s runs from %b to nb

On the other hand:
U = —bcos(lsj, AU? = sin(lsjAs
b b
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We are now able to calculate the integral in 15B.7:

B+C=n+ ” ébAulAu2

Ax
(PPsPs)
" n " 1 €} b 1
A+B+C = n+ j AUt Assin(gsj
ut=0 s=nb/2
s=nb

A+B+C=n+—|-bcos| ~s =n1+0(1+0)=n1+0
b b s=nb/2

This final result confirms the anticipation we made in the beginning of the present Example

15B.
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APPENDICES
Appendix 1

Composition of one-parameter groups of coordinate-transformations that leave
invariant a given real function defined on the tangent spaces of a linear space or a
geometric surface
The case of the Euclidean coordinate-transformations in the Euclidean plane and the
Lorentz transformations in the Minkowski plane

Key concepts: The group of diffeomorphic coordinate-transformations - One-parameter group
of coordinate transformation - The group of matrices on the tangent spaces of a two-
dimensional Euclidean or pseudo-Euclidean space corresponding to the one-parameter group of
coordinate-transformations - Generators of the one parameter groups of transformations -
Infinitesimal coordinate-transformations - Composition of the one parameter group of
coordinate-transformations by means of the generators of the group - Evaluation of the group-
generators from the invariant functions - Example 1: The Euclidean transformations in the 2-
dimensional Euclidean space - Example 2: The Lorentz transformations in the 2-dimensional
Minkowski space

The group of diffeomorphic coordinate-transformations

Consider a real function of the form:

G(x;4x), xR}, Ax e TR}

The points of the Euclidean plane R; and the vectors of its tangent spaces T, R’ are
represented in Cartesian coordinates:

x =(x"x*), Ax = (Ax', AX*) = x, A

The “natural” basis at every tangent space is consisted by the vectors:

x, =(1,0), x, =(0,1)

We are going to develop a procedure to compose the one-parameter groups of coordinate-
transformations that leave invariant functions of the form G(x;Ax) which are continues with

respect to all of their arguments and have derivatives at least up to the second order.

Let us assume the diffeomorphic coordinate-transformation:

x! = X7 (x', x*) (A1.1)
In paragraph 5, we have seen that the diffeomorphic coordinate-transformations are invertible
and they have derivatives of at least up to the second order. We symbolize Diff(Rg) the set of
the diffeomorphic coordinate-transformations of the two dimensional Euclidean space. The set
Diff(Rg) equipped with the operation of transformation-composition acquires the structure of a

group &,

The group of the Jacobian-matrices of the coordinate-transformations
Under the transformation 1 the coordinates of the vectors Ax e T,R; transform according to the

relation:
ok k j
AX" = RiAx? (Al1.2a)
K _ ax* (x) A ok
R;] (x)dzfv =0,X (x) (A1.2b)
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.3, =

We use the symbolism: 0, = —;
X

2
=

The matrix R(x)dzf[Rf (x)] is the Jacobian matrix of the transformation given by A1.1.

The coordinate-transformations x’ = x’(x!,x*) are diffeomorphisms (see paragraph 5); hence

the Jacobian matrix R of each of them is invertible. The Jacobian matrix of the inverse
transformation equals the inverse of the matrix R:

o ox*(x N
R(X) = {%} =[0,x(%)]
x7 = x7 ()_(j(xl,xz))
ox? ox? ox”
ox*  ax™ oxk
5 =R,R]
Furthermore, consider the composed transformation:
x! = x7 ()_(f ()z())
Its matrix is determined by the relationship:
=1 [ox!
RJ} = | —=
{ « _a)?k}
We symbolize:

o120} .

We obtain the identity:

Rl =RLQr

By using the previous identities, we can easily verify ¢ ® that in every tangent space of the
Euclidean plane the set of the matrices [R(x)]=[8,X*(x)] equipped with the operation of the

matrix-multiplication, acquires the structure of a group.

One-parameter group of coordinate-transformation - Generators
Consider the one-parameter group of the coordinate-transformations

X' =W (x;0), peR (A1.3)
The parameter ¢ has been chosen so that if X = ()_(;QB) then the composite transformation
X! =h (W (x;9);®) is given by the rule ®:
X' =h (W (x;0);0) = (x;¢ +B)
Furthermore, the following identities hold:
x’ = h (x;0)
x =N (X;-9)
The one-parameter transformations A1.3 form an Abelian group with operation the composition.
The Jacobian matrix of h is:

(R (x;@)] =[0,h* (x;@)], [Rs (x;0)] = [0} ]
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Consider an infinitesimal variation d¢ — 0 of the parameter. This variation of ¢ causes an
infinitesimal variation dx of the X -coordinates, where:
X =h(x;@) = (M (x;0),1 (x;9),h* (x;))
The infinitesimal variation of the X -coordinate system is determined by the equations:
X/ +0x) = (x;+3¢) = W (W (x;9);00) = W (X;5¢) (Al.4a)
From Al.4a, by holding terms up to first order in the Taylor expansions, we infer that:
ok’ (x; ok’ (x;
(i) 5, - M (Xi¥)
op oy

5% = 5¢ (A1.4b)
w=0
oh’ (h;y)

5 are called “generators” of the group of the transformations
W

The quantities n’ (h) =
w=0
A1.3: if we know the functions n’ (x) we are able to compose the transformation group by

solving the differential equations:

oh’ (x; @) , _ o ,
e - n’ (h(x;@)), W (x;0) = x’ (A1.5)
Proposition Al1.1
The following identity holds:
n’ (h(x;@)) = 8.0’ (x;0)n*(x) (A1.6)
Steps to the proof
. ok’ (x; @
n’ (X) — %
I
, o . _ . _
n(h(x;@))=—=M (h(x;0);p) =—=H(xQ+p) =
op =0 #=0
0 _ 0 _oh(x;
== (h(xe)ie) = h’[ ® (6 J an -
¢ =0 Yol =0
ol . . oh* (x;w _
- ﬁ[hf (x; @)+ 0 (x;qo)—[gw ) (p] -
w=0 =0

=0, (x;9)n*(x)

Infinitesimal coordinate-transformations
Relation Al.4a can be written in the form:

X +8% = W (x;0+60) = W (h(x;00);¢) =

J(x: Al.7
,,LM (AL.72)
op

@=0

5; QDJ = h' (x +n(x)o¢; )

Hence:
X +8% = W (%;69) = X + 17 (X) 89 (A1.7b)
The coordinates X’ are mapped to the nearby coordinates: X’ + ox’

The coordinate-transformation expressed by Al.7b is called “infinitesimal transformation” of

the group.
121



Evaluation of the group-generators from the invariant functions
Assume that the coordinate-transformation X’ = h’(x; @) leaves invariant the real functions:
G?(x;4x),a=1,2..., xR}, Ax e T R}
Then, for every value of the parameter ¢ we have:

G® (x; Ax) = G? (h(x;<p);akh(x; ®) Ax") (A1.8a)
For the infinitesimal transformation X’ +0x’ = b’ (X;5¢) Al.8a takes the form

G® (X; A%) = G (h(X;09); 8,h(X;0p) AX¥) (A1.8b)

By using Al.b, we calculate the Jacobian matrix of the infinitesimal transformation:
X! +0x’ = h ()_(;5(p)
In the X -coordinate system consider the curve:
C:Xx'(0)=c’(0), c’(0) = x’
The tangent vector of ¢ at x = ()"(1,)"(2) is a vector of the tangent space T.R. with coordinates:
51 - dax’ (o)
do | _,
In the (X + dx)-coordinate system the previous curve has the analytic form:
X (0) = b (x(0);00)
Hence, the coordinates of the same tangent vector in the (X +0x)-coordinate system are

calculated by the subsequent equations (we keep terms up to the first order in the
corresponding Taylor expansions):

%(0)= 51 (%(0);09)

o=0

_ dx* (o
= 0.h’ (x;00) d(g)

=0, (X + 1’ (X)0@)x* = (5] + 5,1 (X)0p) X~ =
o=0
= % + 63,17 (X)R*
We conclude that the Jacobian matrix of the infinitesimal transformation x’ +dx’ = h’ ()_(;5qo) is

given by the matrix: [} + 6930’ (X)]

Now, we come back to the equation A1.8b; by expanding the function at its right hand side in a
Taylor series with respect to the infinitesimal quantity 6¢p we obtain:

G (X; 4X) = G (X + n(X) d; AX + 6o, 1 (X) AX )
(a) X' AX ) (a) X' AX) _ )
M T (x +Makm (X)Ax“ =0 (A1.9)
ox’ o0AX?

Where: AX = X(0)Aoc

The equations expressed by Al1.9 are the key point which may lead us to the determination of
the analytic form of the generators n’ ()_() of the coordinate-transformations. Then, by solving

the differential equations A1.5, we could construct the one parameter groups of transformations
which leave invariant the real functions G®. We are going to apply this general procedure for
the cases of the Euclidean and Lorentz transformations.
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Example Al: The Euclidean transformations in the 2-dimensional Euclidean space

Let us apply A1.9 and Al.5 to derive the Euclidean transformations in the two-dimensional
Euclidean space. By definition, the Euclidean transformations are the coordinate-
transformations that leave invariant the analytic expression of the Euclidean inner product given
in Cartesian coordinates. I.e. the form of the real function that is to be invariant under the two-
dimensional Euclidean transformations is the following:

G(%;4%) = (4%') + (a2) (A1.10)

The coordinates x are assumed to be Cartesian.

We apply A1.9 for the analytic form of G given by A1.10 and we obtain:

0,1 (X)AX’ Ax* =0 (A1.11)
(4%1) 3,0 (%) + (A%2) 3,0 (%) + AR AR (3,7 (%) + ,* (X)) = O (A1.12)
Equation A1.12 holds for every value of Ax', Ax* hence, the following relationships are valid:
o,n'(X)=0,6,7°(X)=0, 6,n° (X)+8,n* (X)=0 (A1.12a)
n(x)=n(x*), ?* (X)=n*(x"), o,7° (X*) = ¢ &,n"(X*) = (A1.12b)

The real constant c is arbitrary; nevertheless we can choose the system of units so that c=1.
Then, the matrix [aknf (x)] takes the form:

; 0 -1
(8, (x)] = [1 0] (Al.13a)
By solving equations Al.12a and b we derive the generators of the group:
n(x)=n"(¥*)=-x*+a", P (x)=n*(X")=x" +& (A1.13b)

The values of the constants a' and a? are arbitrary.

According to the previous relationships, the analytic expressions of the generators of the group
have been specified; the last step is to apply equation Al1.5 for the case of the generators given
by A1.13b, and solve it. By its solution we shall determine the one-parameter group of the
transformations that leave invariant the analytic expression of the real function defined by
Al1.10:

1 .

oh (XIQD) __p? (X;(p)-i—al (Al.14a)
op
2 .

%;,(p) =h'(x;p)+a (A1.14b)

The initial conditions are:
h*(x;0) = x*, h*(x;0) = x*
The solution of the system Al.14a and b that satisfy the imposed initial conditions is given by
the functions:
b (x;@) = (x* +@)cos @ + (-x* + &' )sing - & (Al.15a)
R (x;@) = (x* +@)sin@ - (-x* + a')cos @ + &' (A1.15b)
For a'=a’=0 we obtain the well-known group of rotations in the Euclidean plane:
h' (x;) = x' cos@ — x*sing
X - " (Al.16a)
h? (x; @) = x*sing + x> cos @
The Jacobian matrix of the transformation Al.16a is independent of the position x of the
tangent space:
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Pl B Pl _(cos@ -sing
[Rl(x;@)]=[o,h (x,<p)]_(simp Cos(pj (A1.16b)

Example A2: The Lorentz transformations in the 2-dimensional Minkowski space
The Lorentz transformations X’ =h’ (x;qJ) leave invariant the analytic expression of the

Minkowski inner product given in Cartesian coordinates, at any tangent plane of the Minkowski
plane. I.e. the form of the real function that is to be invariant under the two-dimensional
Lorentz transformations is the following:

G(%;4%) = (a%') - (a2) (A1.17)
We apply the procedure we followed in Example A1l; its implementation is specified by the
following steps:

a) Derivation of the Jacobian matrices of the Lorentz transformations from the
generators of the group

The matrix-elements R/ (x;) of the Lorentz transformations X’ = b’ (x; @) satisfy the following

relations:
. oW (x; +0p) ok (X;00)
J . — —
Rl (x;® +0¢) = o = op -0
R (x:9) + 5o RGP _ 0 [ 20) 1 5p 1 (Xi®)
X ¢ 20 = K 7 2 2% o
_ OR! (x; @ 8 /.. o
R] (x; @)+ 640% = ax_k(hJ (x; @) + S (X))
oR! (x;) on’(X) on’(X)oh™ (x; )
op  ox*  oax™ ox*
J (s
%{;'w) =0, (X)RY (x;®) (A1.18)

The matrix [ﬁk’ (x; —(p)] = [Ekh’” ()‘(;—(p)} is the inverse of the matrix: [R,ﬁ (x; (p)} = [akhj (x; (p)]

Indeed, we have:
_ ol (x;-@) oh* (x;p)  oh (X;—)
J Y — K M = =

o (hoao)i-e)_a(50) o
ox™ ox™ ox™ ”

Multiply both sides of A1.18 by R{(X;—¢) and add with respect to the index k. We obtain the
consequent equations:

J .
%;’@)Eg (X @) = 3,0 (X)RY (x; @) RS (X: )
o o . I -
%(R,ﬁ (x;@)RY (X;—QD)) ~-R] (x;(p)%R[’)< (%) = 3,7 (X)

. O =, ,_ -
R} (X;w)%RS (X;-p) = 0,0 (x)

Multiply both sides of the last equation with ﬁj‘.’ ()?;—(p) and add with respect to j:
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- LR (%) = R (%;-9) 3, ()

op
By changing the parameter ¢ — —¢@ we finally result the equation:
0
%Rq (X:p) = (x ®)o,n’ (X) (A1.19)

We conclude that the matrices [ﬁg ()"(;qo)] of the transformations of the group are to be obtained
by solving the system of the differential equations A1.19, with initial condition:

[RI(x;0)]=1

The solution of the equations A1.19 is possible to be accomplished if we know the analytic
expressions of the quantities 6,7’ (X) which are to be derived in the next section (b) of the

present example.

b) Derivation of the quantities 6,7’ (X) from the invariant function G

We apply equation A1.9 for the case of the invariant function given by Al1.17. By following the
steps of the Example 1 we obtain the consequent form for the matrix [épnf ()?)]

01
(6, (X)] = (1 o]defa (A1.20)
According to A1.20, equation A1.19 is written:
M;—gp)zﬁ((p)o,ﬁ(O):I (A1.21)

c) Derivation of the matrix R(¢p)

The last task is to solve the matrix-differential equation Al.21. This is achieved by expanding
the matrix R(¢) in a Taylor series with respect to the parameter ¢ ©.

- oR @* R @’ &R
R I — —
(¢)= +(pago +2!a¢2¢:0+3!a¢3¢0
By using A1.21, we result that:
_ @? o
R(p) = I+(p0+2—o +§0 +.
_ QDZ o ¢3 @°
R(p) = I(1+7+z+ ]+0[(p+§+§+...
The property 0 = I of the matrix o has been used.
R() = I cosh(e) + osinh(¢) (A1.22a)
_ cosh(¢) sinh(o)
R = Al1.22b
(¢) [sinh(q)) cosh(®) ( )

The coordinates-transformation that leaves the analytic form of the Minkowski metric tensor
invariant is accomplished by solving equation:

ox =
= Re)

We obtain the linear transformations:
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X' = x* cosh(¢) + x* sinh (@) (A1.23)
X? = x*sinh(@) + x* cosh(@) |

We can see that under the transformations A1.23, the straight line x> =0 is mapped to the
straight line:

)—(2

& tanh(g)

We define the slope tanh(¢) of this line as a new parameter u and we replace ¢ in A1.23,
according to the relationship:

u = ctanh(o)

The constant c is depended on the choice of the System of Units; the analytic form of A1.23
changes to the well-known Lorentz transformations:

Appendix 2

Infinitesimal orthogonal coordinate-transformation in the 3-dimensional Euclidean
space

Let us consider the group of the orthogonal coordinate-transformations with Jacobian matrices
R =[R}] in a 3-dimensional Euclidean space.

For the case of an infinitesimal transformation, R is infinitely close to the identity matrix:
R=1+6¢pR,1=[5]], 60 -0 (A2.1)

In the present appendix, the matrix Q is to be determined.

Given that the orthogonal transformations leave invariant the analytic expression of the
Euclidean inner product of the space, expressed in Cartesian coordinates (see paragraph 5),
their Jacobian matrices satisfy the condition:

g=R"gR

In Cartesian coordinates, the matrix g of the metric tensor is:

i

Hence, from A2.1, we imply that:

(I+6¢pR) (I+0pR)=1I (A2.2)
Q+Q" =0 (A2.3)
By A2.3 we infer that the matrix 2 is antisymmetric; it has the form:
0 -
Q=lw 0 - (A2.5)
-0 o' 0

The signs + and - have been chosen so that the coordinates of the vector Q2 Ax be identical
with the coordinates of the exterior product w ® Ax i.e.:
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Ax*t ~WAX* + W AX3
Q| Ax? | =| WPAx' - w'AX®
Ax3 ~w’AX' + w'AX?
W ® Ax = (x,0’) ® (X, 4x") =
= X, (a)zAx3 - w3Ax2) + X, (oz)3Ax1 - a)le3) + X (wlﬂxz - a)zAxl)

As usually, the vectors: x; j=1,2,3 consist the “natural” basis of the Euclidean space:

Ax = x, AX", 0 = x,0’
3

X, ®X, =Y £,,.X,
n=1

The quantity €,,, equals to zero if any two of the values of j, k, n are equal. If j= k=n then

; . 123
€., equals to the parity of the permutation 36 ; ( j

jkn

jkn

127



Bibliography
Erwin Kreyszig: Differential Geometry - Dover Publications 1991.
Barrett O'Neil: Elementary Differential Geometry - Academic Press 2nd edition 2006.
B.A. Dubrovin, A.T. Fomenko, S.P. Novikov: Modern Geometry Methods and Applications
Part 1, The Geometry of Surfaces, Transformation Groups and Fields - Springer 2nd edition
1991.
R.C. Buck: Advanced Calculus - McGraw Hill, New York 1956, 3rd ed. Waveland Press, 2003.

Kevin Cahill: Physical Mathematics - Cambridge University Press 2013.

W. Rudin: Principles of Mathematical Analysis - McGraw-Hill International Student Edition,
3d edition 1983.

. Jean Gallier and Jocelyn Quaintance: Algebra, Topology, Differential Calculus and

Optimization Theory for Computer Science and Engineering - Department of Computer and
Information Science University of Pennsylvania Philadelphia, PA 19104 USA, email:
jean@cis.upenn.edu - August 12 2017.

M. Hamermesh: Group theory and its applications to physical problems - Addison-Wesley
1962.

G. Nagy: Ordinary Differential Equations - Mathematics Department, Michigan State
University, East Lancing MI 48824, May 24 2017.

128


mailto:jean@cis.upenn.edu

kostaspapamichalis@gmail.com

129


mailto:kostaspapamichalis@gmail.com

ISBN: 978-960-93-9555-7

130



